JEF/Journal of Education Faculties O Araly - A il s Al

Ty lerd

Volume 18, Issue (2), 2024 H m’ ‘ #2024 ¢(2) 232 ¢ 18 lxal

New Exact Solutions for Coupled Korteweg-de Varies-Zakharov-Kuznetsov

Equation and Modified Korteweg-de Varies-Zakharov-Kuznetsov Equation

M. S. AL-Amry* A. S. Mohammed?
Dept. of Math. Faculty of Education, Aden Univ. Dept. of Math. Faculty of Education, Aden Univ.

DOI: https://doi.org/10.47372/jef.(2024)18.2.99

Abstract: In this paper, we present a model of a coupled of Korteweg-de Varies-Zakharov-
Kuznetsov (KdV-ZK) equation and a modified Korteweg-de Varies-Zakharov-Kuznetsov
(mKdv-ZK) equation, we apply the mapping method to solve the equation. Exact travelling
wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric
functions and rational functions.
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1. Introduction: In recent years, quite a few methods for obtaining explicit traveling and solitary
wave solutions of nonlinear evolution equations have been proposed.

These equations appear in condensed matter, solid state physics, fluid mechanics, chemical
kinetics, plasma physics, nonlinear optics, propagation of fluxions in Josephson junctions, theory
of turbulence, ocean dynamics, biophysics star formation, and many others.

A variety of useful methods, Example of the methods that have been used so far are:

The Extended Hyperbolic function method [1], the First Integral method [2,4], the Sine-cosine
method [3], the Algebraic method [5], an improve F-expansion method [6], variational relatively
method [7], tanh-coth method [8], Jacobi elliptic function expansion method [9], the mapping
method [10], the generalized riccati equation mapping method [11], simplest equation method

[12], the (g—;)-Expansion method [13], tan-cot method [14] and many other, have been proposed

to obtain exact solutions.
With the availability of symbolic computation packages like Maple or Mathematica, the search
for obtaining exact solutions of nonlinear partial differential equations (nPDEs) has become more
and more stimulating for mathematicians and scientists. Having exact solutions of nPDEs makes
it possible to study nonlinear physical phenomena thoroughly and facilitates testing the
numerical solvers as well as aiding the stability analysis of solutions.
In Sec. 3 of this paper, we use the mapping method [10] to find some new solutions of the c(kdv-
zk and mKdv-ZK) equation [15],[17].
2. Description the mapping method: This method was firstly proposed by Peng [12], in 2003
as follows, for a given nonlinear partial differential equation, say, in two variables, Consider the
general nonlinear partial differential equations (nPDES), say, in two variables,

P (U, Uy, Up, Usee, Uypy - ) = 0, (D
Will be simply reviewed as follows:
Step 1: Use the wave variable € = A(x — ct) to change the nPDE in to nODE:

Q(u,u’,u",..)=0, (2)

Where Q is a polynomial of u(¢) and its total derivatives u'(¢),u" (¢), ...
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Step 2: We suppose that the solution of Eqg. (2) has the form

w0 = u(® = ) a(f (), ©)

i=0
where the coefficients a;(i = 0,1,2, ...) , are constants to be determined, and f = f( §) satisfies
a nonlinear ordinary differential equation

- prz(f) G @
where g ,p ,r are constants to be determined later.
In (2008), A. Elgarayhi in [16], used the same solution formula in Eq. (3), but f (&) satisfies
the auxiliary equation

e jpfz(f) PO SO @)
& 2 3

Step 3: We determine the positive integer n in Eq. (3) by balancing the highest-order
derivatives and the highest-order nonlinear terms in Eq. (2)
Step 4: Substituting Eq.(3) along with Eq.(4.1) into Eq.(2) and collecting all the
coefficients of £1(&), then setting them to zero, yield a set of algebraic equations.
Step 5: Solving the algebraic equations in step 4, using the Maple to find
a;,q,p,randc
Step 6: The Eqg. (4) has many solutions as described in the following:
1) f(§) =sech(é),[p=1q=-2,1r=10],
2) f(§) =tanh(§),[p=-2 9= 2 r=1]
3) f(&) = %tanh(Zf) or %coth(Zf), [p=-8 q=32, r= 1],

4) f(&) =%tan(2<f) or %cot(Zf), [p=8 q=32, r= 1],
5) f(&) =sn(é),[p=-(m?+1), q=2m? r=1],

6) f(O) =ns®),[p=—-(m*+1), =2, r=m?],

7 f(&)=cd(),[p=—-(m*+1), g=2m*r=1],

8) f(§) =dc(®),[p=-(m*+1), =2, r=m?],

9) f(&) =cn(@®),[p=2m*—-1, q=-2m? r=1- m?],
10)f(©) =nc(®),[p=2m*—1, g =2(1-m?), r = —m?],
1)@ =dn@),[p=2-m? g=-2r=—(1- m?)]
12)f(§) =nd(®),[p=2-m? q=2(m*-1), r =—1],
13) £(©) = es(®) ,[p = 2-m2, g =2, r = 1— m?]

14) f(&) = sc(§),[p=2-m? q=2(1 - m?), r =1],
15) f (&) = ds(&) ,[p = —142m?, q =2, r = —m?(1 — m?)],
16) f(&) = sd(&),[p = —1+2m?, g =2m?*(m? - 1), r = 1],

INHE) = sc(©) £ ne(@), [p =25, q =205, r =2,

_sn(§) _ m?-2 _m? _1
18)1() = 1+dn(&) ’ b= 4= 1= ]’

19) f(f) _ dn(%) p = m2+1, g = m?-1 = 1—m2]'

1+msn(é) ’ 2 2 2
m?+1 -1 —(1-m?)?
201(5) =men(®) +dn(®), [p="2, g =2, r=""2|,
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_ cn(é) _ m241 _ 1— m? _ 1-m?
21) f(f) - lisn(f) ) - 5 ) q - > , r = 2 :|,
, 1-2m? 1 m2
22)f(f)=msn(€)ildn(§),[p= L q=5, ="
2_ 2 2
23)f(€)=msn(€)iicn(§),[p=m ¢=", r=",
- 4
24)1(8) = ns(§) + ds(®), [p =", g =3, r="|

25)1(§) = ns(§) £ es(8), [p = =2

_ cn(é) __1-2m _1 _1
26)($) = Vi—mZ sn(&)+ dn(§)’’ [p =T 4= = 4]’
2

_ sn(§) _ 1+m? _ (1-m?) _1
i) = 2D [p =1t g =0 o)
_em(® _ m2-2 _ m_2 _1
28) () = Vi—m? + dn(&)’ [p— : 9= 5 r—4],
2_ 2 2
29)f(8) = VimZ — 1sd(§) £ cd(®),[p =2, g =2, r =],

1-2m?

30)1(6) = m cd(§) + i VI—mZ nd(©),,[p =

3)(9) = se(®) £ de(®), ,[p =2, g =1, r :i],

32)f(&) = msd(§) £ nd(8),,[p = ’”22“, q= mzz-l, = mi_l]’
33)(§) = ds(®) + cs(§).,[p =", g = w r=14,
34)f(§) = cd() + vl——nc(g),,[p S -

35)f(¢) = M,[pzZ—élm,q:Z, r=1],

cn(§)
36)f(¢) = % J[p=2m—42 q=2m* r=1],
37)1(&) = %ﬁ;@,[p=2m2+2, qg=2 r=1-2m?+m4
S R
) = sy [ = P 0 =5 = 0 s
40)]0(9():%)(;1(18’ p=6m-—m?—1, q—_— =-=2m3+m*+m ],
41) f(&) = —mr::g)(?ff)’ p=—-6bm-m?—1, q= %, r=2m3+m*+ mz]
42)f(f)=%2(2;1) [p—Zm +2, qg=-2(m?*+2m+ 1)B?, r %],
13) f(§) = D [ = 2m? +2, q = —2(m? — 2m + DB?, 7 = 2]

| —2m?p _ 2m?p?
44) f(f) - \’ (1+m2)qs (w’(1+m2) ) [ (m2+1)2q’ q>0,p< 0]'
P _ 2(1-m?)?p?
) 1©) = | 2 —dn ( [ [r =2
_ |_—2m?p D __ 2m?(m?-1)2p?
1) /() = | e ( [L—¢),[r = ZEEEDT g <0,p > 0),
A fE)=—=,lp=0,qg=cr=0],
5

,p>0,q<0],
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48)f(§) =e*,[p=1,q=01=0].
Step 7: Substituting the solutions of step 6, into Eq. (3) we have the exact solutions of Eq. (1)
3. New exact solutions for c¢(Kdv-zk and mKdv-Zk) equation:

The c(Kdv-ZK and mKdv-Zk) equation is given by
U + B U+ DUy + Uyyy FUyyy F U, =0, B#0, u=ulxy,zt), (5)
where

Up + PUUy + Useyy + Uyyy + Uyzz = 0, (6)
is Korteweg—de Varies—Zakharov—Kuznetsov equation and
Up + BUPUy + Uy + Uyyy T Uzzz = 0, 7

is a modified Korteweg—de Varies—Zakharov—Kuznetsov equation [15].
Using the transformation u(x, y, z,t) = u(¢), ¢ =A(x +y+z —ct) in Eq (1) from (npde) to
(node) we get:

—cAu' + 2w+ uH)u' + 230" =0, (8)
and integration Eq. (8) we obtain
—cu + guz + §u3 +32%2u" =0, (9)

Balancing the highest order of the nonlinear term w3 with the highest order derivative u”, gives
3k =k+2 that gives k = 1.Now, we apply the mapping method to solve equation.
Consequently, we get the original solutions for our new equation as the following:
Assume, the solution of Eq. (5) has the form
u(x,y,z,t) =u(€) = ag +a; f(&) + by f (), (10)

where a,, a; and b; are constants.
By substituting Eq. (10) in Eqg. (9) and using square Eq. (4.1) and its second derivative, the left
hand side is converted into polynomials in f(§){, (=3 <i < 3) . Setting each coefficient of
these resulted polynomials to zero, we obtain a set of algebraic equations for a,, a,, b,,c and £ .
Solving the system of algebraic equations, with the help of algebraic software Maple, we obtain

1) ap=ay,a,=0,b;=0,1=1,c=c,

2) ag=—3;,a; = —‘;,b1=0,ﬂ=+ 367 ,C=—%a,

1 1g B 2
3) Qo = —37, 01 = — /—Z;;b1=0,/1=i E,cz_ga_

The above set of values yields the following exact solutions ¢c(Kdv-ZK and mKdv-ZK) equation.
Using Eqg. (10), the solution of Eq. (4.1) when [p =1, ¢ = —2, r = 0] and the sets of solution
(1) -(4), we get:

uy(x,y,z,t) =ay , ayisconstant, forp >0,

Uy 3(x,y,2,t) = — Ly L sech(ﬁ(x+y+z+%ﬂt) ) , for <0,

6

2= V2
Uys(x,y,z,t) = — % + % sec(g(x+y+z+%,b’t) )

Using Eq. (10), the solution of Eq. (4.1) when [p = —2, ¢ = 2, r = 1] and the sets of solutions
(3)-(4), we get: for <0,

J2
Ug7(x,y,2,t) = —% + %tanh (1—2ﬁ(x +y+z +%ﬁt) ) , for p>0,
i V2
Ugo(x,y,2z,t) = — Z+ Ltan(—ﬁ(x +y+z +l,8t) ) .
, 2 2 12 6
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Using Eq. (10), the solution of Eq. (4.1) when [p = -8, g = 32, r = 1] and the sets of
solutions (3) -(4), we get [ug 7 (x,y,2,t), ugo(x,y,zt)] and for B <0,

V2B

Ui011(0, ¥, 2,t) = — % + %coth(g(x+y+z+%,8t) ) , for B >0,

1 i 2 1
u12,13(x,y,z,t) == + écot(g (x+y+z+gﬁt) ) .

Using Eqg. (10), the solution of Eq. (4.1) when [p = 8, ¢ = 32, r = 1] and the sets of solutions
(3) -(4) we get [ug 7 (x,y,2,t), uge(x,y,2t), Ujo11(x,y,2,t),and us, 13(x,y, 2, t)].

Using Eq. (10), the solution of Eq. (4.1) when [p = —(m? + 1), q = 2m?, r = 1] and the sets
of solutions (3) -(4), we get uy4  17(x,¥,2,t) = ag + a;sn(§) + byns(§).

Note that, when m — 1 we obtain [ ug,(x,y,2,t) and ug9(x,y,z, t)],when m — 0 we obtain
constant solution.

Using Eq. (10), the solution of Eq. (4.1) when [p = —(m? + 1), q = 2, r = m?] and the sets of
solutions (3) -(4), we get uig19_21(%, ¥, 2, t) = ap + ayns(&) + bysn(§).

Note that, when m — 1 We obtain [ u;011(x, ¥, 2, t), u1213(x, ¥, 2, t)], when m — 0, we obtain
for <0,

+ \/—Ecsc(ﬁ(x+y+z+%,3t) ) , for >0,

2 6

Upazs(X,Y,2,t) = — = + \/Z—Ecsch (@(x+y+z+§ﬁt) )

Using Eq. (10), the solution of Eq. (4.1) when [p = —(m? + 1), q = 2m?, r = 1] and the sets
of solutions (3) -(4), we get uyg  29(x,¥,2,t) = ag + a;cd(§) + bydc(§)).

Note that, when m — 1 we obtain constant solutions, also whenm — 0.

We obtain constant solutions.

Using Eq. (10), the solution of Eq. (4.1) when [p = —(m? + 1), q = 2, r = m?] and the sets of
solutions (3) -(4), we get uzg,. 33(x,¥,2,t) = ag + a;dc(§) + bicd(§).

Note that, when m — 1 we obtain constant solution, when m — 0 we obtain
1305, y,2,0), and uy5(x,y,2,0) ]

Using Eq. (10), the solution of Eq. (4.1) when [p = 2m? — 1, ¢ = —2m?, r = 1 — m?] and the
sets of solutions (3) -(4), we get uz,, 37(x,¥,2,t) = ag + a;cn(€) + bync(§).

Note that, when m — 1 we obtain [u,s(x,y,z,t),and u,s(x,y,z,t) ], when m — 0 we obtain
constant solution.

Using Eq. (10), the solution of Eq. (4.1) when [p = 2m? — 1, q = 2(1 — m?), r = — m?] and
the sets of solutions (3) -(4), we get usg  41(x,¥,2,t) = ag + ay;nc(§) + byen($).

Note that, when m — 1 we obtain constant solution, when m — 0 we obtain

[ up3(x,y,2,t),and uys(x,y,z,t) ]

Using Eq. (10), the solution of Eq. (4.1) when [p = 2 —m?, q = =2, r = —(1 — m?)] and the
sets of solutions (3) -(4), we get uy, . 45(x,y,2,t) = ag + a;dn(§) + bynd(§) .

Note that, when m — 1 we obtain u,3(x,y,z,t),and u,s(x,y,zt)], when m — 0 we obtain
constant solutions.

Using Eq. (10), the solution of Eq. (4.1) when [p = 2 —m?, q = 2(m? — 1), r = —1] and the
sets of solutions (3) -(4), we get uye, 49(x, ¥, 2, t) = ag + aynd(§) + bydn(§).

Note that, when m — 1 we obtain constant solutions, also when m — 0 , we obtain constant
solutions.

Upz23(%,y,2,t) = —

N[lRr N|r
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Using Eq. (10), the solution of Eq. (4.1) when [p = 2 —m?2, q = 2, r = 1 — m?] and the sets of
solutions (3) -(4), we get usg,s3(x,y,2,t) = ag + a;cs(&) + bysc(§).

Note that, when m — 1 we obtain u,;,3(x,y,z,t), U4 25(x, ¥, 2, t)], when m — 0 we obtain
[u10,11(%, ¥, 2,t), U12,13(x, ¥, 2, )]

Using Eq. (10) the solution of Eq. (4.1) when [ =2-m? q=2(1- 2) r = 1] and the

.....

Note that, when m-—>1 we obtaln constant solutions, when m — 0, we obtain
[ue7(x,y,2,t), ugo(x,y,21t) ].

Using Eq. (10), the solution of Eq. (4.1) when [p = —1 + 2m?, q =2, r = —m?(1 —m?)] and
the sets of solutions (3) -(4), we get usg ¢1(x,¥,2,t) = ag + a;ds(§) + bysd(§)

Note that, when m — 1 we obtain [uye,7(x,y,2,t), and u,g,9(x,y,2,t) ], also when m - 0
we obtain [ uy;23(x, ¥, 2,t), and Uy4,5(x,y,2,t) |.

Using Eq. (10), the solution of Eq. (4.1) when [p = —1 + 2m?, q = 2m?(1 —m?), r = 1] and
the sets of solutions (3) -(4), we get ug,, 65(x,y,2,t) = ag + a;5d(§) + byds(¢) .

Note that, when m — 1 we obtain constant solutions, also m — 0 we obtain constant solutions.

1-m?

Using Eq. (10), the solution of Eq. (4.1) when [p = 1+2m2, q=—7" 7=

by
(sc(§)nc(§))
Note that, when m — 1 we obtain constant solutions, when m — 0, we obtain for >0,

vz ==t (en(Bo e +0) (2 <x+y+z+gﬁt)))

u72,73(X,}’.Z,t)=—%—%<tan<m(x+y+z+ ﬁt>+sec< x+y+z+- Bt ))
for <0,

Uza7s(X,Y,2,t) = —%+;<ltanh<r(x+y+z+ pt )
m

solutions (3) -(4), we get uge, . 69(x,¥,2,t) = ag + ay(sc(§) £ nc(é)) +

6

<@(x+y+z+ pt )

Uz677(x,Y,2,t) = — %—%(i tanh(‘/z_ﬁ(x +y+z+- ﬁt )

2 m?
2

, q= ﬂ and the sets of

r =

sn($) +dn($)
1+dn(€)) ( sn(§) )
Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain for <0,

1 tanh(‘/_ﬁ(x+y+z+ ﬁt) )

2 1+ sech(‘/_ (x+y+z+ ﬁt) )

1( tanh(‘/_ x+y+z+ Bt )
)

1
Ugags(X,Y,2,t) = — 12

Using Eqg. (10), the solution of Eq. (4.1) when [p =

)

solutions (3) -(4) , we get u,g  g1(x,¥,2,t) = ay + (

1
Ugzg3(x,y,2,t) = — St3

>0,
1+ sech(‘/— (x+y+z+ Lt >> for ﬁ

V2B
tan(¥=" ++z+—ﬁt
+§<Lan(6(xy ))>,

(— xX+y+z+= Bt )

u86,87(x: YV, z, t) = -

N |-

( ) 1 1 itan (@ x+y+z+ Bt )
Ugggo(X,y,2,t) = — > — = |
22 \44 ec(@ (x+y+z+2pt) )
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m2-1
2

. d 1+
solutions (3) -(4), we get ugy o3(x,¥,2,t) = ap + a; (ﬁr;l—g(f)) + by (%;@) .

Note that, when m — 0 we obtain constant solution, also when m — 1 , we obtain constant
solutions.

a2
LT = 1Tm] and the sets of

. ) m241
Using Eq. (10), the solution of Eq. (4.1) when [p == q=

2 _ (1_ 2
Using Eq. (10), the solution of Eq. (4.1) when [p = m2+1, q= ?1 r= %] and the sets of

b1
(mcn(§)+dn)
Note that, when m — 0 we obtain constant solution, when m —1 we obtain

[u2,3(x! y: Zl t)l and u4,5(x, y, Z, t) ]
Using Eqg. (10), the solution of Eq. (4.1) when [p = m22+1, q=

solutions (3)-(4), we get ugy 97(x,¥,2,t) = ag + a;(m cn(§) £ dn) +

1-m?

2
= 1—m] and the sets of
2 4

14_6-1;(115()5)) +b (%:—g)f))

Note that, when m — 1 we obtain constant solution, when m — 0 we obtain for g >0,

cos(‘/i_ﬁ(x+y+z+ Bt ) )
)

1+sm( x+y+z+ Bt

)
cos(LZE(w+y 242t )))

1ism( x+y+z+= Bt

solutions (3) -(4), we get ugg _101(x,¥,2,t) = ap + a; (

1,
U102103(X, ¥, 2, t) = - + E(

1 i
u104,105(X, v, zZ,t) = — o= E(

for <0,

cosh( x+y+z+—[)’t

1xisinh (2L (cayrzsl Bf3)>
l, ( cosh(ZE(xc+y+z+2pt ))

1
u108,109(xi Y,z t) = -,z
2 2 1+i smh( (x+y+z+ Lt )

Using Eq.(10), the solution of Eq. (4.1) when [p = -

1, i
u106,107(x; Y, Z, t) = _E+ E(

2m

2
. q —1 =mT] and the sets of

by
(msn(®)xidn(®))
Note that, when m —> 0 we obtain constant solutions, when m —1 we obtain

[U70,71(x, ¥, 2, ), .., Uz677(x, ¥, Z, 1) ].
Using Eq.(10), the solution of Eg. (4.1) when [p = 22_ ,q=, T = mTz] and the sets of
solutions (3) -(4), we get
Uya,.117(%, Y, 2,8) = ag + a;(m sn(é) £ i cn(§)) + m sn(f?j_ricn(f))'
Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain
[U70,71 (%, ¥, 2, 1), ., Uz 77 (X, ¥, Z, 1) ].

solutions (3) -(4), we get uqq¢,.113(x, ¥, 2,t) = ap + al(m sn(é) +idn(é)) +

Using Eg. (10), the solution of Eq. (4.1) when [p = 2_2, q= 1 =mT4] and the sets of
. _ b,
solutions (3)-(4), we get uy1g  121(x,¥,2,t) = ag + a;(ns(§) ds(f)) + —(ns(f)ids(f)))'

Note that, when m — 0, we obtain [u;;,3(x,y,2,t) and uy4,5(x,y,2,t)], when m - 1 we
obtain for >0,

Uip2123(X, Y, 2, t) = —§+ é(cot <@ (x +y+z+ %ﬁt)) + csc <@(x +y+z+ %Bt))),
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cx|%|
=

Uip4125(X, Y, 2, t) = —%+ é(cot( (x +y+z+ %ﬁt)) + csc <@(x +y+z+ %ﬁt))),

for <0,
U126127(%, Y, 2, ) = — %+%<Coth (J_(x +ty+z+- [)’t)) + csch (E (x +ty+z+- ﬁt)))

u128,129(x:y,2.t)=—%+;( th<\/_(x+y+z+ Bt)>+csch<‘/_ﬁ(x+y+z+ ,Bt)))

) . 1-2m? 1 1
Using Eq.(10), the solution of Eq.(4.1) when [p =— . q=5 7= Z] and the sets of
. _ b1
solutions (3)-(4), we get uy30, . 133(x,¥,2,t) = ag + a;(ns(§) £ cs(§)) + GG cs(g)))'

Note that, when m — 0 we obtain, [ U155 123(x, ¥, 2,t), ..., U128 120(%, ¥, 2, t)] ,also when m — 1
we obtain [ u16,127(%, ¥, 2, t) , ..., U12g120(X, ¥, Z, 1) ].
Using Eq.(10), the solution of Eq. (4) when [p - lo2m”
(3)-(4), we get

, q = % r= ﬂ and the sets of solutions

cn(é) V1-m2 sn(§)+ dn(§)
Ui34,.,137(%, ¥, 2, 1) = @ + al(\/—sn(€)+ dn(g‘)) + by ( cn(€) )

Note that, when m — 1 we obtain constant solutions, when m — 0, we obtain

[U102,103(%, Y, 2, 1), ..., U108.100(X, ¥, Z, )]

2 —m2)?
Using Eq.(10), the solution of Eq.(4.1) when [p = 1+2m , q = a Tzn ) , T = ﬂ and the sets of
. (&) +dn(§)
solutions (3) -(4), we get uy3g,141(%,,2,) = ag + a4 (#ﬁn@) +b (%) .

Note that, when m — 1 we obtain constant solutions, when m — 0, we obtain § > 0 ,

sin(@(x+y+z+%ﬁt) )
cos(@ (x+y+z+l[3t) )+1 ’

sin( x+y+z+= Bt )
o ,

cos(\/_ﬁ (x+y+z+ ﬁt) )

smh( x+y+z+= ﬁt ) )

cosh(‘/TB (x+y+z+ ,Bt +

1 i
Usg2143(X, Y, 2,t) = — S+ (

i

1
Uigq145(X, Y, 2, t) = — ~— <

for <0,

( t) 11 smh( x+y+z+—[3t )
tas 400X, Y, 280 = 2 2 cosh(‘/—ﬁ(x+y+z+ ﬁt i

1,1
u146,147(x; Y, Z, t) = _E+ E(

Using Eq.(10), the solution of Eq. (4) when [p =

—, r= 1] and the sets of solutions

€3) V1-m? + dn(§)
(3)-(4), we get uysg, 153(x,y,2,t) = ap + al(\/l——nc:;—-i_-dn(f)) + b (———— cn(f) - ).

Note that, when m — 1 we obtain constant solutions, also when m — 0, we obtain constant

solutions.
mZ

- . m2-2 m2
Using Eq. (10), the solution of Eq. (4.1) when [p = q=,r= T] and the sets of
solutions (3) -(4), we get

- 2 — by
u154,...,157(x, y,z,t) = ag + a;(Vm 1sd(§) £ cd(§)) + (P —1 sd(&)t cd(®)) *
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Note that, when m — 1 we obtain constant solutions, also when m — 0, we obtain constant
solutions.

Using Eq.(10), the solution of Eq. (4) when [p =
(3)-(4), we get
, b,
Usss,.161(% Y, 2, 1) = ag + a;(m cd(§) £ ivm? — 1 nd(§)) + (m cd(&)+ivme—1 nd(®)) *

Note that, when m — 1, we obtain constant solutions, also when m — 0 we obtain constant
solutions.

1-2m?
2

, q= % r= ﬂ and the sets of solutions

_1-2m?

Using Eq.(10), the solution of Eq. (4) when [p == q= % r= ﬂ and the sets of solutions
(3)-(4), we get
_ by
Ue2,..165(X, ¥, Z,t) = ag + as(sc(§) + dc(§)) + Ge(E)t de@)’
Note that, when m — 1, we obtain constant solutions, when m — 0, we obtain
[U7071(x, ¥, 2, 1), ..., Uz 77(x, Y, Z, 1)].
m2+1 m2—1 m2

Using Eq.(10), the solution of Eq. (4) when [p == 4= , T =

_1] and the sets of
4

solutions (3)-(4), we get
b
Uses,.,160(%, ¥, 2, ) = ag + a;(m sd(§) + nd(§)) + (m sd(g); nd(§))"

Note that, when m — 1 we obtain constant solutions, also when m — 0 we obtain constant
solutions.

Using Eq. (10), the solution of Eq. (4.1) when [p = # q= % r= ﬂ and the sets of
solutions (3) -(4), we get
b
Us70,.173(0, Y, 2,8) = ag + a1 (ds(§) = cs(§)) + m-

Note that, when m — 1 we obtain constant solutions, when m — 0 we obtain
[Uz223 (x,¥,2,t), and uy,,5(x,y,2,t)].

Using Eq. (10), the solution of Eq. (4.1) when [p —m , q= % r :T] and the sets of

solutions (3) -(4), we get

_ 7 by
Ug7a,177(%, Y, 2, 1) = ag + a;(dc(§) £Vm? —1nc(§)) + (@)t VmP =1 ne(®)’

Note that, when m —1 we obtain constant solutions, when m — 0we obtain

[u2,3(x' Y, Z, t) and u4,5(x' Y,z t) ]
Using Eq.(10), the solution of Eq.(4) when [p =2 —4m?, g =2, r =1] and the sets of

. (§dn(é) 3
SO|UtI0nS (3) '(4), we get u178,"’181((x, y, Z, t) = ao + a1 (%) + b1 (%)

Note that, when m — 1, we obtain [ug,(x,y,z,t) and ug9(x,y, z, t)],also when

m — 0 we obtain [u6,7(x, ¥, z,t) and ugo(x,y, z, t)].

Using Eq.(10), the solution of Eq. (4) when [p = 2m?2,—4 q = 2m?, r = 1] and the sets of
=)+ (050)

Note that, when m — 1, we obtain [ug,(x,y,2,t) and ugq(x,y,z, t)],when m — 0 we obtain

constant solutions.

Using Eq. (10), the solution of Eq. (4.1) when [p =2m?+ 2, ¢ =2, r =1 —-2m? + m*] and

the sets of solutions (3) -(4), we get

solutions (3)-(4), we get uygy  185(%,¥,2,t) = ap + a; (
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dn(§)en($) dn(§)en(s)
Usge,..,189(%, ¥, 2, 1) = Ao + a4 (W) + by (W)

Note that, when m — 0 we obtain [u;11(x,y,2,t) and uy, 13(x,y,2,t)], whenm — 1
we obtain for g >0,

B
1 \/—- sech? x+y+zs ﬁt)
u19o191(x v, Z, t)__E v2i \(r ),
tanh(— x+Y+Z+—ﬁt )
forp <0,
1, V2 S¢¢ x+y+z+- ﬁt
U192,103(X, Y, 2, 1) = — e ( )
tan( ( X+y+z+- ﬁt)>
2 2_ 2 2
Using Eq.(10), the solution of Eq.(4) when [P 2713:2' =4 (mz 1))  r==2 (ZlAz )2 ] and the

sets of solutions (3)-(4), we get
_ dn(§)cn(§) A(1+sn(§))(1+msn(é))
Unos,..107 (%, 2,8) = Go + @y (A(1+sn(f))(1+m sn(f))) + by ( dn(&)cn (&) )

Note that, when m — 0 and A = 1 we obtain [u;93 103(x, t), ..., U108 100 (%, t)], Whenm — 1
we obtain constant solutions.

m2+1 A2(m2+1)* Az(m2+1)2]
y 4 = y T'=
2—-3m?2 2

Using Eq.(10), the solution of Eq.(4) when [p = and the

sets of solutions (3)-(4), we get

_ dn(&)cn(¥) A(1+sn(8))(1-m sn(§))
t198,..201 (%Y, 2, 1) = o + &y (A(1+sn(€))(1—msn(€))) +h (T nme )

Note that, when m — 0and A = 1 we obtain [u;93103(X, ¥, 2, t), ..., U108,109 (%, ¥, 2, t)], When
m— land A= 1 ,weobtain for <0,

11 sech? (@(Jﬁ)ﬁz"‘%ﬁt) )
Uz02,203 (%, 2, 8) = = 2 %2 <1—tanh2(@ (x+y+z+3pt) )) ’
for >0,
- secz(‘/_ﬁ(x+y+z+ Bt) )
u204‘205(x, Yo t) - E i ; ( 1- ltanz(‘m (x+y+z+ ﬁt) ))

Using Eq.(10), the solution of Eq.(4) when [p =6m—-m?—1,q= _;8 r=-2m3+m*+ mz]

and the sets of solutions (3)-(4), we get

m cn(§) dn(§) msn?(&)+1
U206,..,200(% ¥, 2,1) = Go + a1 (705 570) + by (o).

Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain for >0,

( x+y+z+= Bt

2

B

st = Bl
2102115, ), 2, 2 2 tanh2<‘/ﬁ (x+y+z+ Bt i

u (x,y,2,t) = _1_¥2 SeChz(ﬁ (eeyrzegpt )
212,213 7 % 2 2 tanh2<‘/ﬁ (x+y+z+ Bt i

for <0,

1 N sec ( x+y+z+ Bt )

Up14215(X, Y, 2,t) = — 2 i ( i tanz(£ x+y+z+ ﬁt ir

2 £ ) )

u (x,y,2,t) = SR, 2
216,217 'y1 ) 2 5 /
itan —(X+y+Z+ ﬁt
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Using Eq.(10), the solution of Eq.(4) when [p =—6m—-—m?—-1,q= %, r=2m3+m*+ mz]

and the sets of solutions (3) -(4), we get

m cn(§) dn(§) msn?(§)—1
Uzis,..221 (%Y, 2,8) = Qo + a1 (5705 57 0) + by (o0 ).

Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain for g <0,
sechz(@(x+y+z+lﬁt) )
tanhz(‘/_ﬁ(x+y+z+ Bt) ) '

1.1
Uppz223(X,Y,2,t) = — 5 + E(

for B >0,
SN O SR acadas ),
Uz24225\%, Y, %,1) = =515 ztanz(\/z?(“y*z* 5t) ) 1)

Using Eq.(10), the solution of EQ.(4) when [p =2m?+2, q=-2(m?*+2m+1)B? r =

2m-m?—

] and the sets of solutions (3) -(4), we get

msn?(&)-1 B(msn?(§)+1)
uzze,,..,zzt;(% ¥, Z,t) = ag +ay (m) + 01 (W)

Note that, when m — 0 we obtain constant solutions, when m — 1 we obtain for § >0,

tanh? X+y+z+= ,Bt 1
Up30231(X, Y, 2,t) = —li ( )
2 tanh2 P x+y+z+ Bt )
for <0,
1 2 i tan? ( xX+y+z+= [:’t ) 1
Up32233(X, Y, 2,t) = — e 7( )

itanz( x+y+z+ Bt +1

Using Eq.(10), the solution of Eq.(4) when [p =2m?+2, q=-2(m?*-2m+ 1)B? r=

_ 2
%} and the sets of solutions (3)-(4), we get

2(H)+1 B 2(8)-1
u234,...,237(9€, .z, t) =ayg+a, (%) + b, (E:LSZLZ—(E)JFI))

Note that, when m — 0 we obtain constant solutions, also when m — 1, we obtain constant
solutions.

Using Eq.(10), the solution of Eq.(4) when [r =

2 2

= 2+1)2 , p<0, q>0] and the sets of

solutions (3)-(4), we get

—2m?p -p —2m2p -p
Uzzg,..2a (67, 2,8) = Ao + a3 \/(m2+1)q 5n< (m2+1) E) by \/(m2+1)q sn( (m?+1) f)

Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain
[ u6,7(xl Y,z t) and ug’g(X, v, Z, t) ]

Using Eq.(10), the solution of Eq.(4) when [r = %, p>0,q< O] and the sets of

-1

solutions (3)-(4), we get

—2p p —2p 14
oz, 245(6 Y 2, ) = Ao + 0y j @-m?)q dn( (z—mZ)E) thy j z-m?)q dn( @-m?) E)

Note that, when m — 0 we obtain constant solutions, when m — 1, we obtain
[uy3(x,y,2,t) and uy5(x,y,z,t)].

-1
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2m?p?(m?-1)
(2m?-1)%q

Using Eq.(10), the solution of Eq.(4) when [r = , p>0,q< 0] and the sets of

solutions (3)-(4) , we get

—-2m2p p -2p p
Wat6,.200 (07, 2,8) = Gotay j(sz—l)qcn< (zm2—1)5> by \/(sz—l)qC"< (2m2—1)";>

Note thatt when m —>0 we obtain constant solutions, when m — 1we
obtain[ u, 3(x,y,z,t) and uy5(x,y,z, t)].
4. Conclusion:

-1

In this paper, the mapping method has been successfully implemented to find new traveling
wave solutions for our new proposed equation namely, a combined of (KDV-ZK and mKDV-
ZK) equation. The results show that this method is a powerful Mathematical tool for obtaining
exact solutions for our equation. It is also a promising method to solve other nonlinear partial
differential equations.
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