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Abstract: In this paper, we present a new models of Kadomtsev-Petviashvili and Benjamin-
Bona-Mahony (KP-BBM) equation, namely, a generalized of (KP-BBM) and Zakharov
Kuznetsov-Benjamin Bona Mahony-Joseph Egri equation, namely, a generalized of (ZK-
BBM-JE). We apply the sin-cosine method to solve them.

Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions

and trigonometric functions.

Keywords: generalized of (KP-BBM) equation, generalized of (ZK-BBM-JE) equation,
exact solutions and sin-cosine method .

Introduction: Any physical, biological and chemical phenomena can be modeled using
nonlinear partial differential equations (NLPDES). Many researchers have been interested in
obtaining exact solutions of NLPDEs by using some methods as: the tanh method [5], the
extended tanh-function method (ETM) [8], the simplest equation method [7], the integral
bifurcation method [6], the extended mapping transformation method [21,1], the Backlund
transformation of Riccati equation method (BTREM) [10,20], Hirota’s direct method [2], (G./G
,1/G) expansion method [3], the mapping method [11], extended rational sinh-cosh and sin-
cosine methods [12] and the extended generalized Riccati equation mapping method
[4,9,13,14]. The present work is motivated by the desire to employ a sin-cosine method to
nonlinear physical models [18,19], our approach is based mainly on a priori assumption that
the solutions can be expressed in terms of sin or cosine functions.

Description of the Sin-Cosine Method

1. The wave variable § = pu(x — ct) carries a NLPDE in two independent variables

p(u, Uy, U, Uyy, Uy, ... ) = 0. (1)
to a nonlinear ordinary differential equation ( NLODE )

Q(u,u’,u",..) =0, (2)
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Eq.(2) is then integrated as long as all terms contain derivatives where integration constants are
neglected.

2. The solutions of many NLPDES can be expressed in the form

B T
U(X, t) — {{}\COS (ME)} ) |E | < 20 (3)
0, otherwise
or in the form
i B I
et = {{m () R )
0, otherwise

where A, i, and S are parameters that will be determined, u and ¢ are the wave number and the

wave speed respectively, we then use
W™’ = —npBA"cos™ = (u§)sin (ug)

W) = —n2u2B2A"cos™ (ug) + np? A"B(nf — 1)cos™ 2 (ug) 5)
or

W™’ = —npBA"sin™ =1 (u§)cos (ug)

W™" = —n?p?B2Asin™ (ug) + np®A"B (B — Vsin™~2(u§) , (6)
3. Substituting Eq. (5) or Eq. (6) into the integrated NLODE gives a trigonometric equation
of cosB(ug) or sinP(pg) terms. The parameters are A, p, and B then obtained by equating the
exponents of each pair of cosine or sine, and by collecting all coefficients of the same power
in cos®(p&) or sin®(pg), and set it equal to zero.
Exact Solutions for g(KP-BBM) Equation

In this section, we present our proposed equation, namely, a generalized Kadomtsev

Petviashvili and Benjamin-Bona-Mahony equation
Wy + v + a(V™)y — bVUyxe)x + CcVyy, =0, v=v(x,yt), (minteger) >3, @)
and denoted by g(KP-BBM) [16], where a, b, and c are arbitrary nonzero-constants.
We solve g(KP-BBM), by using the sin-cosine method.
Substituting v(x,y,t) = v(§), & = (x + y — wt), in Eq.(7), we get

(1= 0w/ @© +bav” @ +a(v"(@®) ) +ev"@ =0, m=n (8)
and integrating the resulting equation, we find
A+ c—w)v(é) + bwv" (&) + av™(é) =0, 9

Eq.(9) is nonlinear ordinary differential equation.

Now, we apply the sin-cosine method, to solve our equation. Consequently, we get the original
solutions as the follows:

Substituting Eq.(3) or Eq.(4) in Eq.(9), using Eq.(5) or Eq.(6), we obtain
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(1+c—w)AcosB(ué) +a (Acosﬁ (uf))n

+bw (~Au?B? cosP (ug) + u?AB(B — DeosF2(uf) ) = 0. (10)
Equating the exponents of the second and the last cosine functions, collecting
the coefficients of each pair of cosine functions of the same exponent and setting it equal to
zero, we obtain the following system of algebraic equations:
L—1#0,nB=0—-2, wbAu?p? =1+ c—w)A,
aA™ = —wbu?AB(B — 1). (11)
Solving this system leads to

n-1 |(1+c-w)

-2
=g v= T Ta o beF 0,

1

1= (_ M)E ) (12)

2a

That can be easily obtained if we also use the sine method (4).
In view of the results (12), we get the following periodic solutions:

n-1
v(x, 1) = | - Loty cscz<"7 L9 (xty - wt)) ,pE|<m
and
1
-1
_ _(1+c—w)(n+1) 2[n-1 (1+c—w) _ T
v(x,t) = ————— sec ( 5 &ty wt)) e <3
where &9 5 ¢
(1+c w) . . .
However, for < 0, we obtain the solitary patterns solutions
1
-1
v(x, t) _ (1+c—;ua)(n+1) ch? (nzl ’(1+c w) (x+y wt)) '
and
1
-1
v(x, t) = ——(Hc_;’a)(nﬂ) sech? <n7—1 —(HC ©) (x+y-— wt))

A Variant of the g(KP-BBM) Equation:

We next consider the nonlinear generalized Kadomtsev Petviashvili-Benjamin-Bona-
Mahony equation with negative exponent

(e + v + a(V™)x — bUyye)x + CVyy, = =v(x,y,t), n>1 (13)
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Now, we apply the sin-cosine method, to solve our equation. Consequently, we get the original
solutions as the follows:
substituting v(x,y,t) = v(§¢), £ = (x + y — wt), in Eq. (13), we get

((1 — w)V' (&) + bwv'" (&) + a(v‘"(f))’)’ + v (§) =0, (14)
and integrating the resulting equation, we find
A1+ c—w)v(é) +bwv"(&) +av™™(&) =0, (15)

Eq.(15) is nonlinear ordinary differential equation.
The cosine ansatz Eq.(3) takes EQ.(15) to

(1+y—w)AcosP(ué) + a (Acosﬁ(,uf))_n + bw(—=Au?B? cosP (ué)

+u*AB(B — 1)cosP~2(u)) = 0. (16)
Equating the exponents of the second and the fourth cosine functions, and equating the
coefficients of cosine functions of the same power as used before we get:

f—1#0, —nf=p-2, bwlu’?f?=>0+c—w)A,

al™ = —bwu?AB(B — 1). (17)
Solving this system leads to

1
_ _ n+1 |[(1+c-w) _ 2a n+1
B = n+1 "’ K= 2 \I bw b #0, A= ((1+c—w)(n—1)) ) (18)

That can be easily obtained if we also use the sine method (4). In view of the results (18), the

following periodic solutions:

a 1
n+1
_ 2 . +1 |(1+c-w)
U(x»t)—< msuﬂ(% #( +y wt)) ) |‘LI§|ST[
\
and
p 1
n+1
_ 2a 2 [ nt1 (1+c ) T
v ) = (1+c-w)(n-1) cos ( 2 (e+y- a)t)) AR 2
\
where &=9) o

(1+c—w)

However, for < 0, we obtain the solitary patterns solutions

n+1

_ -2a n+1 (1+c w)
vix,t) = _— 2
(x.8) (1+c-w)(n-1) sinh ( (x+y- wt)) ’
and
1
n+1
2a n+1 (1+c w)
vix,t) = —_— 2
( ) (1+c—w)(n—1) osh ( 2 ( Ty - wt))
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Exact Solutions for g(ZK-BBM-JE) Equation:
In this section, we consider generalized Zakharov Kuznetsov-Benjamin Bona Mahony -
Joseph Egri equation
Ve + 0 +a(W™)yx + b(Vye + Vyy + V) =0, v=v(x,y,t) (minteger) # £1, (19)
and denoted by g(ZK-BBM-JE) [15,17].
Now, we apply the sin-cosine method, to solve our equation.
Consequently, we get the original solutions as the follows:

substituting v(x,y, t) = v(§), & = (x — wt) , in Eq.(19) we get

1-)V' (@) +b(1—w+ 0>V () +a(@™(é)) =0, m=n (20)
Integrating once Eq.(20), we find
1-wv@® +b(1—-—w+ o)) +av™(€) =0, (21)

Eq.(21) is nonlinear ordinary differential equation.
The cosine ansatz Eq. (3) takes Eq.(21) to

(1 — w)AcosP (ué) + a (Acosﬁ (,uf))n +b(1— w + w?)(—Au?B? cosP (ué)

+u?AB(B — DcosP2(ug)) = 0. (22)
Equating the exponents of the second and the fourth cosine functions, and equating the
coefficients of cosine functions of the same power as used before we get:

F—1#0, nf=F-2, b(1—w+ o?)A?p?*=1-w)A,

al" !t = —b(1 — w + 0?21 - 1). (23)
Solving this system leads to

-2 n-1 (1-w)

_ T2 _ _ 2
B_n—l’ H= 2 b(1-w+w?) b1 —w+ %) #0,

A= (“‘"”ﬂ)ﬁ . (24)

2a

That can be easily obtained if we also use the sine method (3).

In view of the results (24), the following periodic solutions:

| (w-D(n+1) 2 [n-1 (1-w) _
v(x,t) = —, — ¢sc ( > /—b(l_mwz) (x+y wt)) , 0< |ué|<m
and
1
n—1
_ | (w=-D(n+1) 2(n-1 (1-w) _ L
v(x,t) = —, — sec ( . /—b(l—w+w2) (x+y wt)) , ué < .
(1-w)
where m > 0.
However, for (1;“’)2 < 0, we obtain the solitary patterns solutions
b(1-w+w?)
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(w=1)(n+1) -1 / (1-w)
v(x,t) = —% csch? <nT r;:_wz) (x +y-—- wt)) )

and

(w-1)(n+1 -1 / (1-w)
v(x, t) = (uTin) S€Ch2 (nT Ta‘)l:-cuz) (X' +y-— (L)t))

A Variant of the g(ZK-BBM-JE) Equation:

We next consider the nonlinear generalized Zakharov Kuznetsov-Benjamin Bona

1

n-1

Mahony-Joseph Egri equation with negative exponent

Vet v +a(@ )y + bV Uy F V) =0, v=v(x,y,1), n>1 (25)
Now, we apply the sin-cosine method, to solve our equation.
Consequently, we get the original solutions as the follows:

substituting v(x, y, t) = v(§), & = (x — wt), in Eq.(25), we get

1-wv' (@ +b(1-w+0?)v" () +a@™(E) =0, (26)
Integrating once Eq.(26), we find
1-w)v@®+b(1l—w+w?)v"(E)+av (&) =0, (27)

EQ.(27) is nonlinear ordinary differential equation.
The cosine ansatz Eq.(3) takes Eq.(27) to

(1 — w)AcosB (ué) + a (Acosﬁ (,uf))_n +b(1 — w + w?)(—Au?B? cosP (ué)

+ 12AB(B — 1)cosP2(ug) = 0. (28)
Equating the exponents of the second and the fourth cosine functions, and equating the
coefficients of cosine functions of the same power as used before we get:

—nB=F-2, (l—w+oH)p?p>*=1A-w)A B—-1%#0,

al™ = —b(1 — w + 0H)UAB(B — 1). (29)

Solving this system leads to

2 o [Gw
B_n+1"u_ 2 A\ b(l-w+w?) y 0 #0,

(24 \am
A= ((w—l)(l—n)) ' (30)
That can be easily obtained if we also use the sine method (4). In view of the results (30), the

following periodic solutions:

1

n+1
— 2a . o[ ntl (1-w) _
v(x,t) @asy Sin ( . /—b(l_mwz) (x+y wt)) , ué|<m

and
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1
n+1
— 2a 2 Tl_+1 (1—(1)) _ E
v(x,t) @Das o8 ( . /—b(l—wﬂuz) (x+y wt)) =3
where —2=2__ 5 o,
b(1-w+w?)
However, for a-w) - , We obtain the solitary patterns solutions
b(1-w+w?)
1
n+1
_ -2a o ntl (1-w) _
v(x,t) = @D sinh ( > ’—_b(l_mwz) (x+y wt))
and
1
n+1
_ 2a 2 [ nt+1 (1-w) _
v(x, t) = @D cosh ( . /——b(l—wﬂoz) (x+y wt))
Conclusions:

In this paper, we generalized Zakharov Kuznetsov-Benjamin Bona Mahony-Joseph Egri
equation g(ZK-BBM-JE) and Kadomtsev Petviashvili- Benjamin-Bona-Mahony equation
g(KP-BBM). Then, we give its exact solutions by applying the sin-cosine method. The results
show that this methods are a powerful mathematical tool for obtaining exact solutions for our
equations.

It is also a promising methods to solve other nonlinear partial differential equations.
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daarall (A gala -U g ~Cpmaldy - ALY Caaiie galS Adlaal 3aaa Jla
Aaarall (g ) iy j o - shla Uigy (el - guatid 5 98 i g A § Allaa g

gSAQ..m 41)‘.4,\9 u.du éJ.A_ﬂ\ (xSLu daaa
e fadin e A 1l A€ lnl ) o e fadin e A il A€ clnl o

daare alaa a5 Asale - U - Gualin g Leilaiy - Condia sal€ Aalaal 23l a2 43 ) 6l 28 s adlal)
daare Alae (25,5 ) s - (Pl Uiy Gaaliy - asudin )5S g Jlal ) Aalaa s ( KP-BBM ) sl
Lelad bl a5 cuall 46y )k (3akai s ( ZK-BBM-JE ) 4laad

ASEL ) gall 5 A 31 J) sl Lgie yand 5 Alitiall il sall 488 J sl o Jians

48y Jols (ZK- BBM-JE) daladl dasee dilas ,( KP- BBM ) ilalaal docns Alslae sdpalidal) cilall)

el cus g cuall 45 Hla
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