

A Decompositions of Continuity in Ideal Topological Spaces

Radhwan Mohammed Aqeel

Dept. of Mathematics, Faculty of Science Aden University, Yemen e-mail <u>raqeel1976@yahoo.com</u>

Fawzia Abdullah Ahmed

Dept. of Mathematics, Faculty of Education Aden University, Yemen e-mail fawziaahmed89@yahoo.com

Abstract: The intention of this work is to study the concepts of strong $\alpha^* - I -$ continuity and strong $\alpha^* - I -$ open (resp. closed) mappings in ideal topological spaces, obtain several characterizations and some properties of these mappings and investigate its relationship with other types of mappings. Also, we introduce strong $\alpha^* - I -$ separation axioms in ideal topological spaces and study some their characterize.

Keywords: Ideal topological spaces, strong $\alpha^* - I$ – continuous, strong $\alpha^* - I$ – open (closed) mapping, strong $\alpha^* - I$ – separation axioms.

1- Introduction and Preliminaries.

Quite recently, Hatir and Noiri [10] established the concept of $\alpha - I$ — continuous functions and utilized it to derive a decomposition of continuity. Açıkgöz, Noiri and Yüksel [1] established numerous characterizations of $\alpha - I$ — continuous functions and to introduce and obtain the features of $\alpha - I$ — open functions in ideal topological spaces. Dontchev [7] used ideals to investigate Hausdorff spaces.

Arenas, Dontchev and Puertas [5] introduced separation axioms in ideal topological spaces by connecting an open or closed set with a member of the ideal. These are referred to as

 T_1 spaces. Hatir and Noiri [11] proposed and investigated the concept of semi-I — Hausdrorff spaces. Throughout this paper cl(A) and int(A) denote the closure and the interior of A, respectively. Let (X, τ) be a topological space and I an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions [13]:

- (1) If $A \in I$ and $B \subset A$, then $B \in I$.
- (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. An ideal topological space is a topological

space (X, τ) with an ideal I on X and is

denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I,\tau) = \{x \in X : U \cap A \notin I \text{, for each neighborhood } U \in \tau(X)\}$ is called the local function of A with respect to I and τ [14]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau) = U - I : U \in \tau$ and $I \in I$, but in general $\beta(I,\tau)$ is not always atopology, additionally, $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$ [12].

In the form of Definition 1.1, we refer to the results reported in [2-4, 8-10].

Definition 1.1. A subset A of an ideal topological space (X, τ, I) is called:

- (1) $S.S^* I$ open if $A \subset cl^*(int^*(A))$,
- (2) $S.P^* I$ open if $A \subset int^*(cl^*(A))$,
- (3) αI open if $A \subset int(cl^*(int(A)))$,
- (4) $\beta^* I$ open if $A \subset cl(int^*(cl(A)))$,
- (5) b I open if $A \subset cl^*(int(A)) \cup int(cl^*(A))$,
- (6) strong $\alpha^* I$ open if

 $A \subset int^* (cl^*(int^*(A)))$.

We mention the following results in the form of Definition 1.2 among the results reported in [6, 8-10].

Definition 1.2. A mapping

 $f:(X,\tau,I)\to (Y,\sigma)$ is called:

(1) $\alpha - I$ – continuous if $f^{-1}(V)$ is

 $\alpha - I$ – open in X, $\forall V \in \sigma$.

(2) $S.S^* - I$ – continuous if $f^{-1}(V)$ is $S.S^* - I$ – open set in $X, \forall V \in \sigma$.

- (3) $S. P^* I$ continuous if $f^{-1}(V)$ is $S. P^* I$ open in $X, \forall V \in \sigma$.
- (4) $\beta^* I$ continuous if $f^{-1}(V)$ is $\beta^* I$ open in $X, \forall V \in \sigma$.
- (5) b I continuous if $f^{-1}(V)$ is b I open in $X, \forall V \in \sigma$.

2- Strong $\alpha^* - I$ — Continuous Mappings

Definition 2.1. A mapping $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is called $S. \alpha^* - I$ — continuous if $f^{-1}(V)$ is a $S. \alpha^* - I$ — open set in (X, τ, I) , $\forall V \in \sigma$.

Example 2.2. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\}$, $\sigma = \{\phi, Y, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}\}$. If $f: (X, \tau, I) \to (Y, \sigma)$ defined by: f(a) = a, f(b) = d, f(c) = b, f(d) = c, then $f^{-1}(Y) = X, f^{-1}(\phi) = \phi$ and $f^{-1}(V)$ is $S. \alpha^* - I$ — open $\forall V \in \sigma$. Hence f is $S. \alpha^* - I$ — continuous.

The following diagram which holds for a mapping $f: (X, \tau, I) \rightarrow (Y, \sigma)$.

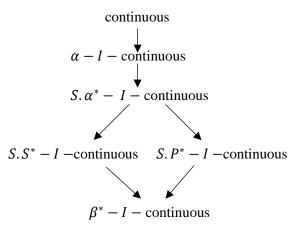


Fig. 1. The implication between some generalizations of continuous mapping.

Remark 2.3. The converse of these implications in Fig.1 are not true in general as shown in the following examples.

Example 2.4. From Example 2.2 f is

 $S. \alpha^* - I$ – continuous while f is not

 $\alpha - I$ – continuous because $f^{-1}(\{b,d\})$

is $S. \alpha^* - I$ – open, but $f^{-1}(\{b, d\})$

is not $\alpha - I$ – open.

Example 2.5. Let $X = Y = \{a, b, c, d\}$,

 $\tau = \{\phi, X, \{c\}, \{a, b, d\}\}, I = \{\phi, \{a\}\},\$

 $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\} \text{ and } f: (X, \tau, I) \rightarrow$

 (Y, σ) defined by: f(a) = c, f(b) = a,

f(c) = d, f(d) = b, then f is $S.P^* - I -$

continuous, but it is not $S. \alpha^* - I -$

continuous because $f^{-1}(\{a\})$ is

 $S. P^* - I$ – open, while $f^{-1}(\{a\})$

is not $S. \alpha^* - I$ – open.

Example 2.6. Let $X = Y = \{a, b, c\}$,

 $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}, I = \{\phi, \{b\}\},\$

 $\sigma = {\phi, Y, {\alpha}, {b, c}}$ and $f: (X, \tau, I) \rightarrow$

 (Y, σ) defined by: f(a) = a, f(b) = c,

f(c) = b. We notice that f is $S.S^* - I -$

continuous, but it is not $S. \alpha^* - I -$

continuous because $f^{-1}(\{b,c\})$ is $S.S^*$ –

I – open, but $f^{-1}(\{b,c\})$ is not

 $S. \alpha^* - I$ - open.

Example 2.7. If $X = Y = \{a, b, c, d\}$,

 $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\}, \ I = \{\phi, \{a\}\},\$

 $\sigma = \{\phi, Y, \{c\}, \{b,c\}\} \text{ and } f \colon (X,\tau,I) \to$

 (Y, σ) defined by: f(a) = c, f(b) = a,

f(c) = b, f(d) = d, then f is $\beta^* - I -$

continuous but it not $S. \alpha^* - I$ — continuous

because $f^{-1}(\{b,c\})$ is $\beta^* - I$ — open,

while $f^{-1}(\{b,c\})$ is not $S. \alpha^* - I$ – open.

Remark 2.8. S. $\alpha^* - I$ – continuous and

b - I — continuous are independent notions

Examples (2.9, 2.10).

Example 2.9. Let $X = Y = \{a, b, c, d\}$,

 $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\}, I = \{\phi, \{a\}\},\$

 $\sigma = \{\phi, Y, \{c\}, \{a, c\}\} \text{ and } f: (X, \tau, I) \to I$

 (Y, σ) defined by: f(a) = a, f(b) = c,

f(c) = d, f(d) = b. Then we get that f is

 $S. \alpha^* - I$ — continuous but not b - I —

continuous because $f^{-1}(\{c\})$ is $S. \alpha^* - I -$

open, while $f^{-1}(\{c\})$ is not b - I – open.

Example 2.10. Let $X = Y = \{a, b, c\}$,

 $\tau = {\phi, X, \{a\}, \{c\}, \{a, c\}\}, I = {\phi, \{b\}\}},$

 $\sigma = \{\phi, Y, \{a\}, \{a, c\}\} \text{ and } f: (X, \tau, I) \rightarrow$

 (Y, σ) defined by: f(a) = a, f(b) = c,

f(c) = b. Then we obtain f is b - I -

continuous, while f is not S. $\alpha^* - I -$

continuous because $f^{-1}(\{a,c\})$ is

b-I -open but $f^{-1}(\{a,c\})$ is not

 $S. \alpha^* - I$ – open.

Theorem 2.11 presents the relationship

between $S. \alpha^* - I$ – continuous, $S. \alpha^* - I$ –

closure and $S. \alpha^* - I$ —interior

Theorem 2.11. Let $f:(X,\tau,I)\to (Y,\sigma)$ be a

mapping. The following statements are

equivalent:

(1) f is S. $\alpha^* - I$ – continuous,

(2) $\forall x \in X \text{ and } \forall V \in \sigma \text{ and } f(x) \in V$,

 $\exists S. \alpha^* - I$ - open set $W \subset X$ such that $x \in$

 $W, f(W) \subset V$.

(3) $f^{-1}(V)$ is $S. \alpha^* - I$ – closed, \forall closed

set $V \subset Y$.

(4) $f(S. \alpha^* Icl(A)) \subset cl(f(A)), \forall A \subset X.$

 $(5) S. \alpha^* Icl(f^{-1}(V)) \subset f^{-1}(cl(V)), \forall V \subset$

Y .

 $(6) f^{-1}(int(V)) \subset S. \alpha^* Iint(f^{-1}(V)),$

 $\forall V \subset Y$.

Proof. (1) \Rightarrow (2) Let $x \in X$, $V \in \sigma$ and

 $f(x) \in V$. Put $W = f^{-1}(V)$, then by

Definition 2.1 W is S. $\alpha^* - I$ — open such that $x \in W$ and $f(W) \subset V$.

 $(2)\Rightarrow (3)$ Let V is a closed set of Y. Put E=Y-V, then $E\in \sigma$. Let $x\in f^{-1}(E)$, then by (2) we have $f(W)\subset E$. Thus,

$$x \in W \subset int^*(cl^*(int^*(W)))$$
$$\subset int^*(cl^*(int^*(f^{-1}(E))))$$

hence $f^{-1}(E) \subset int^*(cl^*(int^*(f^{-1}(E))))$. This shows that $f^{-1}(E)$ is $S. \alpha^* - I$ — open. Hence

$$f^{-1}(V) = X - f^{-1}(Y - V)$$
$$= X - f^{-1}(E).$$

This implies that $f^{-1}(V)$ is $S. \alpha^* - I$ -closed. (3) \Rightarrow (4) Let $A \subset X$, then $f(A) \subset Y$ and because $f(A) \subset cl(f(A))$, then $A \subset f^{-1}(f(A)) \subset f^{-1}(cl(f(A)))$.

$$S. \alpha^* Icl(A) \subset S. \alpha^* Icl(f^{-1}(cl(f(A))))$$
$$= f^{-1}(cl(f(A)))$$

and therefore,

This implies that

$$f(S. \alpha^* Icl(A)) \subset f(f^{-1}(cl(f(A)))$$

 $\subset cl(f(A))$

Hence $f(S. \alpha^* Icl(A)) \subset cl(f(A))$.

 $(4) \Rightarrow (5)$ Let $V \subset Y$, then $f^{-1}(V) \subset X$ and by (4) we get

$$f(S. \alpha^* Icl(f^{-1}(V))) \subset cl(f(f^{-1}(V)))$$

 $\subset cl(V)$, therefore,

$$f^{-1}(f(S. \alpha^* lcl(f^{-1}(V)))) \subset f^{-1}(cl(V)).$$

Hence

$$S. \alpha^* Icl(f^{-1}(V))$$

$$\subset f^{-1}(f(S. \alpha^* Icl(f^{-1}(V))))$$

$$\subset f^{-1}(cl(V)).$$

$$(5) \Rightarrow (6)$$
 Let $V \subset Y$, then $Y - V \subset Y$. Now by (5) we have

$$S. \alpha^* Icl(f^{-1}(Y-V)) \subset f^{-1}(cl(Y-V)),$$

Therefore
$$X - S$$
. $\alpha^* Iint(f^{-1}(V)) \subset X -$

$$f^{-1}(int(V))$$
. Hence

$$f^{-1}(int(V)) \subset S. \alpha^* Iint(f^{-1}(V)).$$

 $(6) \Rightarrow (1)$ Let $V \in \sigma$, therefore

$$f^{-1}(V) = f^{-1}(int(V))$$

$$\subset S. \alpha^* Iint(f^{-1}(V)).$$

Hence $f^{-1}(V)$ is $S. \alpha^* - I$ – open $\forall V \in \sigma$.

This shows that f is S. $\alpha^* - I$ — continuous.

The following theorems explain some of the characteristics of S. $\alpha^* - I$ — continuous.

Theorem 2.12. Let $f:(X,\tau,I) \to (Y,\sigma)$ be mapping. Then the following statements are equivalent:

- (1) f is S. $\alpha^* I$ continuous.
- $(2) cl^*(int^*(cl^*(f^{-1}(V)))) \subset f^{-1}(cl(V)),$ $\forall V \subset Y.$
- $(3) f(cl^*(int^*(cl^*(A)))) \subset cl(f(A)), \forall A \subset X.$

Proof. (i) \Rightarrow (ii) Since f is a S. $\alpha^* - I -$

continuous, cl(V) is closed, then by

Theorem 2.11 (3) $f^{-1}(cl(V))$ is $S. \alpha^* - I -$

closed $\forall V \subset Y$ and we have

$$cl^*(int^*(cl^*(f^{-1}(V)))) \subset$$

$$cl^*(int^*(cl^*(f^{-1}(cl(V))))) \subset f^{-1}(cl(V)).$$

Hence

$$cl^*(int^*(cl^*(f^{-1}(V)))) \subset f^{-1}(cl(V))$$
.

$$(2) \Rightarrow (3)$$
 Let $A \subseteq X$, then $f(A) \subseteq Y$ and by

(2) we have

$$cl^*(int^*(cl^*(f^{-1}(f(A))))) \subset$$

$$f^{-1}(cl(f(A)))$$
. Therefore,

$$cl^*(int^*(cl^*(A)))$$

$$\subset cl^*(int^*(cl^*(f^{-1}(f(A)))))$$

$$\subset f^{-1}(cl(f(A))).$$

Hence

$$f(cl^*(int^*(cl^*(A)))) \subset f(f^{-1}(cl(f(A))))$$
$$\subset cl(f(A)).$$

(3) \Rightarrow (1) Let $V \in \sigma$, then $f^{-1}(Y - V) \subset X$ and by (3)

$$f(cl^*(int^*(cl^*(f^{-1}(Y - V)))))$$

$$\subset cl(f(f^{-1}(Y - V)))$$

$$\subset cl(Y - V) = Y - V.$$

Therefore,

$$f(X - int^*(cl^*(int^*(f^{-1}(V))))) \subset Y - V.$$
 Hence

$$X - int^*(cl^*(int^*(f^{-1}(V))))$$

$$\subset f^{-1}(f(X - int^*(cl^*(int^*(f^{-1}(V))))))$$

$$\subset f^{-1}(Y-V)$$

$$= X - f^{-1}(V).$$

Thus,
$$f^{-1}(V) \subset int^*(cl^*(int^*(f^{-1}(V))))$$
.

Hence
$$f^{-1}(V)$$
 is S . $\alpha^* - I$ — open. This shows that f is S . $\alpha^* - I$ — continuous

Theorem 2.13. Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a

bijective mapping. Then f is S. $\alpha^* - I$ –

continuous if and only if $int(f(A)) \subset$

$$f(S. \alpha^* Iint(A)), \forall A \subset X.$$

Proof. Let f be a S. $\alpha^* - I$ — continuous,

$$\forall A \subset X$$
, then $f^{-1}(int(f(A)))$ is $S. \alpha^* - I -$

open. Because f is bijective and by Theorem

2.11 (6) we have

$$int(f(A)) = f(f^{-1}(int(f(A))))$$

$$\subset f(S. \alpha^* Iint(f^{-1}(f(A))))$$

$$= f(S. \alpha^* Iint(A)).$$

Hence $int(f(A)) \subset f(S. \alpha^* lint(A))$.

Conversely, let $V \in \sigma$, then V = int(V) and by hypothesis we obtain

$$V = int(V)$$
$$= int(f(f^{-1}(V)))$$

$$\subset f(S. \alpha^* lint(f^{-1}(V)))$$

hence $V \subset f(S. \alpha^* lint(f^{-1}(V)))$ this implies that

$$f^{-1}(V) \subset f^{-1}(f(S.\alpha^* lint(f^{-1}(V))))$$

$$= S. \alpha^* Iint(f^{-1}(V))$$

therefore,
$$f^{-1}(V) \subset S$$
. $\alpha^* lint(f^{-1}(V))$.

Hence
$$f^{-1}(V)$$
 is $S. \alpha^* - I$ — open. This

shows that
$$f$$
 is S . $\alpha^* - I$ — continuous.

Corollary 2.14. Let
$$f:(X,\tau,I)\to (Y,\sigma)$$
 be

a bijective mapping. Then f is S. $\alpha^* - I -$

continuous if and only if
$$int(f(A)) \subset$$

$$f(int^*(cl^*(int^*(A)))), \forall A \subset X.$$

Proof. Let f be bijective S. $\alpha^* - I -$

continuous, then by Theorem 2.13 we get

$$int(f(A)) \subset f(S. \alpha^* Iint(A))$$

$$\subseteq f(int^*(cl^*(int^*(S.\alpha^*Iint(A)))))$$

$$\subseteq f(int^*(cl^*(int^*(A)))).$$

Conversely, let $V \in \sigma$, $f^{-1}(V) \subset X$. Since f

is bijective and by hypothesis we

Obtain

$$V = int(V)$$

$$= int(f(f^{-1}(V)))$$

$$\subset f(int^*(cl^*(int^*(f^{-1}(V))))).$$

Therefore,

$$f^{-1}(V)$$

$$\subset f^{-1}(f(int^*(cl^*(int^*(f^{-1}(V))))))$$

=
$$int^*(cl^*(int^*(f^{-1}(V)))).$$

Hence $f^{-1}(V)$ is $S. \alpha^* - I$ — open. This

shows that f is S. $\alpha^* - I$ — continuous.

Remark 2.15. If $f:(X,\tau,I)\to (Y,\sigma,I)$ and

$$g: (Y, \sigma, I) \rightarrow (Z, \mu)$$
 are $S. \alpha^* - I -$

continuous mappings, then the composition

$$g \circ f: (X, \tau, I) \to (Z, \mu)$$
 may not be a

 $S. \alpha^* - I$ — continuous mapping. This can be

shown by the following example.

Example 2.16. Let $X = Y = Z = \{a, b, c, d\}$, $\tau = \{\phi, X, \{c\}, \{a, b, d\}\}, I = \{\phi, \{a\}\} \text{ be an ideal on } X, \sigma = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}\},$ $J = \{\phi, \{a\}, \{d\}, \{a, d\}\} \text{ be an ideal on } Y \text{ and } \mu = \{\phi, Z, \{a\}, \{a, b, d\}\}. \text{ If } f: (X, \tau, I) \rightarrow (Y, \sigma, J) \text{ and } g: (Y, \sigma, J) \rightarrow (Z, \mu) \text{ defined as following: } f(a) = d, f(b) = b, f(c) = a,$ f(d) = c, g(a) = a, g(b) = c, g(c) = b, $g(d) = d, \text{ then } g \text{ and } f \text{ are } S. \alpha^* - I - \text{continuous but } g \circ f: (X, \tau, I) \rightarrow (Z, \mu) \text{ is not } S. \alpha^* - I - \text{continuous because}$ $(g \circ f)^{-1}(\{a, b, d\}) = \{a, c, d\} \text{ is not } S. \alpha^* - I - \text{open.}$

Definition 2.18. A mapping $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is called $S. \alpha^* - I$ — irresolute if $f^{-1}(V)$ is a $S. \alpha^* - I$ — open set in (X, τ, I) for every $S. \alpha^* - I$ — open set $V \subset Y$.

Theorem 2.19. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a mapping. Then the following statements are equivalent:

- (1) f is a S. $\alpha^* I$ irresolute,
- (2) $\forall x \in X$ and each $S. \alpha^* I$ open V in Y such that $f(x) \in V$, there exists A is $S. \alpha^* I$ open in X such that $x \in A$ and $f(A) \subset V$,
- (3) $f^{-1}(V)$ is a $S. \alpha^* I$ closed set, for each $S. \alpha^* I$ closed set V in X.

Proof. (1) \Rightarrow (2) Let $x \in X$, V is S. $\alpha^* - I - O$ open in Y and $f(x) \in V$. Put $A = f^{-1}(V)$, then by Definition 2.18 A is S. $\alpha^* - I$ open in X such that $x \in A$ and $f(A) \subset V$.

(2) \Rightarrow (3) Let *V* is *S*. $\alpha^* - I$ – closed of *Y*.

Put E = Y - V, then E is S. $\alpha^* - I$ — open in

Y. Let $x \in f^{-1}(E)$, then by (2) we have $f(A) \subset E$. Thus, $x \in A \subset int^*(cl^*(int^*(A)))$ $\subset int^*(cl^*(int^*(f^{-1}(E))))$

hence

 $f^{-1}(E) \subset int^*(cl^*(int^*(f^{-1}(E))))$. This shows that $f^{-1}(E)$ is $S. \alpha^* - I$ — open. Since

$$f^{-1}(V) = X - f^{-1}(Y - V)$$
$$= X - f^{-1}(E)$$

This implies that $f^{-1}(V)$ is $S. \alpha^* - I$ – closed.

(3) \Rightarrow (1) if V be S. $\alpha^* - I$ — closed in Y, then Y - V is S. $\alpha^* - I$ — open in Y. By (3) $f^{-1}(V)$ is S. $\alpha^* - I$ — closed in X and $f^{-1}(V) \supset cl^*(int^*(cl^*(f^{-1}(V))))$ $X - f^{-1}(V) \subset X - cl^*(int^*(cl^*(f^{-1}(V))))$ $f^{-1}(Y - V) \subset int^*(cl^*(int^*(f^{-1}(Y - V))))$, so $f^{-1}(Y - V)$ is S. $\alpha^* - I$ — open in X. Hence f is S. $\alpha^* - I$ — irresolute.

Theorem 2.17. If $f: (X, \tau, I) \to (Y, \sigma)$ is a $S. \alpha^* - I$ — continuous mapping and $g: (Y, \sigma) \to (Z, \mu)$ is a continuous mapping, then $g \circ f: (Y, \sigma, J) \to (Z, \mu)$ is a $S. \alpha^* - I$ — continuous mapping.

Proof. Let $V \in \mu$. Since g is continuous, then $g^{-1}(V) \in \sigma$. And since f is $S. \alpha^* - I$ — continuous, then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $S. \alpha^* - I$ — open. Hence $g \circ f$ is $S. \alpha^* - I$ — continuous. **Theorem 2.21.** Let $f: (X, \tau, I) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \mu)$ be mappings. Then Then $g \circ f: (X, \tau, I) \to (Z, \mu)$ is $S. \alpha^* - I$ — continuous if g is $S. \alpha^* - I$ — continuous

Volume 17, Issue (2), 2023

المجلد ۱۷، العدد (2)، ۲۰۲۳ م

and f is S. $\alpha^* - I$ – irresolute.

Proof. Let $V \in \mu$. Since g is S. $\alpha^* - I -$ continuous, then $g^{-1}(V)$ is S. $\alpha^* - I -$ open. And since f is S. $\alpha^* - I -$ irresolute, then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is S. $\alpha^* - I -$ open. Hence $g \circ f$ is S. $\alpha^* - I -$ continuous.

Theorem 2.22. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \mu, \delta)$ be mappings. Then $g \circ f: (X, \tau, I) \to (Z, \mu, \delta)$ is $S. \alpha^* - I$ — irresolute if both g and f are $S. \alpha^* - I$ — irresolute.

Proof. Let V is S. $\alpha^* - I$ — open in Z. Since g is S. $\alpha^* - I$ — irresolute, then $g^{-1}(V)$ is S. $\alpha^* - I$ — open. And since f is S. $\alpha^* - I$ — irresolute, then $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is S. $\alpha^* - I$ — open. Hence $g \circ f$ is S. $\alpha^* - I$ — irresolute.

Theorem 2.23. Let $f: (X, \tau, I) \to (Y, \sigma)$ be a mapping. Then f is a $S. \alpha^* - I$ — continuous mapping if f is both $S. P^* - I$ — continuous and $S. S^* - I$ — continuous mappings.

Proof. It follows from (Theorem 10, [2]).

3- Strong α^* - I - Open (Closed) Mappings **Definition 3.1.** A mapping $f: (X, \tau) \rightarrow (Y, \sigma, I)$ is called $S. \alpha^* - I$ — open if the f(A) is a $S. \alpha^* - I$ — open set $in (Y, \sigma, I)$, $\forall A \in \tau$.

Definition 3.2. A mapping $f: (X, \tau) \to (Y, \sigma, I)$ is called $S. \alpha^* - I$ — closed if f(F) is a $S. \alpha^* - I$ — closed set $in (Y, \sigma, I)$, for each closed set F in (X, τ) .

As an example of $S. \alpha^* - I$ — open(closed)

mappings, we give the following examples.

Example 3.3. Let $X = Y = \{a, b, c, d\}$,

 $\tau = {\phi, X, {d}, {a, c, d}}, \sigma = {\phi, Y, {c}},$ $\{b,c\},\{b,c,d\}\}, I = \{\phi,\{a\},\{b\},\{c\},$ $\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}.$ If $f:(X,\tau)\to$ (Y, σ, I) defined by: f(a) = d, f(b) = c, f(c) = a, f(d) = b, then f(X) = Y, $f(\phi) = \phi$ and f(A) is $S. \alpha^* - I$ – open $\forall A \in \tau$. Hence f is S. $\alpha^* - I$ – open. **Example 3.4.** Let $X = Y = \{a, b, c, d\}$, $\{b,c\},\{c,d\},\{b,c,d\}\}, I = \{\phi,\{a\},\{b\},$ $\{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $f:(X,\tau)\to (Y,\sigma,J)$ defined by: f(a)=b, f(b) = a, f(c) = d, f(d) = c. Then f(X) = Y, $f(\phi) = \phi$ and f(F) is $S \cdot \alpha^* - \phi$ I – closed for each closed set $F \subset X$. Hence f is S. $\alpha^* - I$ – closed.

Theorem 3.5. $f: (X, \tau) \to (Y, \sigma, J)$ is $S. \alpha^* - I$ — open if and only if $\forall x \in X$ and each neighborhood U of x, there exists $S. \alpha^* - I$ — open set $V \subset Y$, $f(x) \in V$ such that $V \subset f(U)$.

Proof. Suppose that f is $S. \alpha^* - I$ — open. Then $\forall x \in X$ and each neighborhood U of x, there exists $U_0 \in \tau$ such that $x \in U_0 \subset U$. Since f is $S. \alpha^* - I$ — open, $V = f(U_0)$ is $S. \alpha^* - I$ — open in Y and $f(x) \in V \subset f(U)$. Conversely, let $U \in \tau$. Then $\forall x \in U$, there exists V_x is $S. \alpha^* - I$ — open in Y such that $f(x) \in V_x \subset f(U)$. Therefore, we obtain $f(U) = \bigcup \{V_x : x \in U\}$ and hence by (Theorem 17 (1), [2]), f(U) is $S. \alpha^* - I$ —open. This shows that f is $S. \alpha^* - I$ —open. Theorem 3.6 presents the relationship between $S. \alpha^* - I$ — open mapping, $S. \alpha^* - I$ — closure operators and $S. \alpha^* - I$ — interior operators.

Theorem 3.6 Let $f: (X, \tau) \to (Y, \sigma, J)$ be a mapping. Then the following statements are equivalent:

- (1) f is S. $\alpha^* I$ open.
- (2) $f(int(A)) \subset S. \alpha^* Iint(f(A)), \forall A \subset X.$
- (3) $int(f^{-1}(V)) \subset f^{-1}(S. \alpha^* Iint(V)),$ $\forall V \subset Y.$
- $(4) f^{-1}(S. \alpha^* Icl(V)) \subset cl(f^{-1}(V)), \forall V \subset Y.$
- (5) $f(int(A)) \subset int^*(cl^*(int^*(f(A)))),$ $\forall A \subset X.$

Proof. (1) \Rightarrow (2) Let f be $S. \alpha^* - I$ – open and $A \subset X$, then $f(int(A)) \subset f(A)$. This implies that

$$S. \alpha^* Iint(f(int(A))) \subset S. \alpha^* Iint(f(A))$$
, but $f(int(A))$ is $S. \alpha^* - I$ — open.

Therefore,

$$f(int(A)) = S. \alpha^* Iint(f(int(A)))$$
$$\subset S. \alpha^* Iint(f(A)).$$

 $(2) \Rightarrow (3)$ Let $V \subset Y$, then $f^{-1}(V) \subset X$ and by (2)

$$f(int(f^{-1}(V))) \subset S. \alpha^* Iint(f(f^{-1}(V)))$$

 $\subset S. \alpha^* Iint(V).$

So.

$$int(f^{-1}(V)) \subset f^{-1}(f(int(f^{-1}(V))))$$

 $\subset f^{-1}(S.\alpha^* Iint(V)).$

- $(3) \Rightarrow (4)$ Let $V \subset Y$, then $Y V \subset Y$ and by
- (3) we have

$$int(f^{-1}(Y-V)) \subset f^{-1}(S. \alpha^* lint(Y-V)).$$

Thus,

$$X - cl(f^{-1}(V)) \subset f^{-1}(Y - S. \alpha^* Icl(V))$$

= $X - f^{-1}(S. \alpha^* Icl(V)).$

Hence $f^{-1}(S. \alpha^* Icl(V)) \subset cl(f^{-1}(V))$.

$$(4) \Rightarrow (5)$$
 Let $A \subset X$, then $Y - f(A) \subset Y$

and by (4), we get

$$f^{-1}(S. \alpha^* Icl(Y - f(A)))$$

$$\subset cl(f^{-1}(Y - f(A)))$$

$$f^{-1}(Y - S. \alpha^* Iint(f(A)))$$

$$\subset cl(X - f^{-1}(f(A)))$$

$$X - f^{-1}(S. \alpha^* Iint(f(A)))$$

$$\subset X - int(f^{-1}(f(A))).$$

This implies that

$$int(f^{-1}(f(A))) \subset f^{-1}(S. \alpha^* Iint(f(A))).$$

Wherefore,

$$int(A) \subset int(f^{-1}(f(A)))$$

$$\subset f^{-1}(S. \alpha^* Iint(f(A))).$$

Hence

$$f(int(A)) \subset f(f^{-1}(S. \alpha^* lint(f(A))))$$
$$\subset S. \alpha^* lint(f(A)).$$

Which shows that

$$\subseteq int^*(cl^*(int^*(S.\alpha^*lint(f(A))))$$

$$\subseteq int^*(cl^*(int^*(f(A)))).$$

 $(5) \Rightarrow (1)$ Let $A \in \tau$, then by hypothesis we have

$$f(A) = f(int(A))$$

$$\subset int^*(cl^*(int^*(f(A)))).$$

Hence f(A) is $S. \alpha^* - I$ — open. Thus f is

$$S. \alpha^* - I$$
 – open.

Theorem 3.7. Let $f:(X,\tau)\to (Y,\sigma,J)$ be a

bijective mapping and $\forall V \subset Y$. Then the

following statements are equivalent:

- (1) f is S. $\alpha^* I$ closed.
- (2) $f^{-1}(S. \alpha^* Icl(V)) \subset cl(f^{-1}(V)),$
- $(3) int(f^{-1}(V)) \subset f^{-1}(S. \alpha^* lint(V)),$
- (4) $int(f^{-1}(V)) \subset f^{-1}(int^*(cl^*(int^*(V)))).$

Proof. (1) \Rightarrow (2) Since f is S. $\alpha^* - I -$

closed and $V \subset Y$, then

$$S. \alpha^* Icl(V) = S. \alpha^* Icl(f(f^{-1}(V)))$$

$$\subset S. \alpha^* Icl(f(cl(f^{-1}(V))))$$

$$\subset f(cl(f^{-1}(V))).$$

Therefore,

$$f^{-1}(S. \alpha^* Icl(V)) \subset f^{-1}(f(cl(f^{-1}(V))))$$

= $cl(f^{-1}(V)).$

 $(2) \Rightarrow (3)$ Let $V \subset Y$, then $Y - V \subset Y$ and by

(2) we have

$$f^{-1}(S. \alpha^* Icl(Y - V)) \subset cl(f^{-1}(Y - V)).$$

So,

$$X - f^{-1}(S. \alpha^* Iint(V)) \subset X - int(f^{-1}(V))$$

Thus

$$int(f^{-1}(V)) \subset f^{-1}(S. \alpha^* lint(V)).$$

$$(3) \Rightarrow (4)$$
 Let $V \subset Y$, then by (3)

$$int(f^{-1}(V)) \subset f^{-1}(S.\alpha^* Iint(V))$$

 $\subset f^{-1}(int^*(cl^*(int^*(S.\alpha^* Iint(V)))))$

 $\subset f^{-1}(int^*(cl^*(int^*(V)))).$

 $(4) \Rightarrow (1)$ Let F is closed in X, then

$$Y - f(F) \subset Y$$
 and by (4) we get

$$int(f^{-1}(Y-f(F)))$$

$$\subset f^{-1}(int^*(cl^*(int^*(Y-f(F)))))$$

$$X-cl(f^{-1}(f(F)))$$

$$\subset X - f^{-1}(cl^*(int^*(cl^*(f(F)))))$$

This implies that

$$f^{-1}(cl^*(int^*(cl^*(f(F)))))$$

$$\subset cl(f^{-1}(f(F)))$$
. Therefore,

$$f^{-1}(cl^*(int^*(cl^*(f(F)))))$$

$$\subset cl(f^{-1}(f(F)))$$

$$= cl(F) = F.$$

Thus,

$$cl^*(int^*(cl^*(f(F))))$$

$$= f(f^{-1}(cl^*(int^*(cl^*(f(F))))))$$

$$\subset f(F).$$

This shows that f(F) is $S. \alpha^* - I$ – closed.

So,
$$f$$
 is S . $\alpha^* - I$ – closed.

Theorem 3.8. If $f: (X, \tau) \to (Y, \sigma, I)$ is a $S. \alpha^* - I$ — open mapping, then $\forall V \subset Y$ and each closed set $F \subset X$ such that $f^{-1}(V) \subset F$, there exists a $S. \alpha^* - I$ — closed set $W \subset Y$ such that $V \subset W$ and $f^{-1}(W) \subset F$.

Proof. suppose that f is S. $\alpha^* - I$ — open. Let $V \subset Y$ and each closed set $F \subset X$ such that $F \supset f^{-1}(V)$. Then $X - F \in \tau$. And since f is S. $\alpha^* - I$ — open, then f(X - F) is S. $\alpha^* - I$ — open. Hence W = Y - f(X - F) is S. $\alpha^* - I$ — closed in Y. It follows from $f^{-1}(V) \subset F$ that $V \subset W$. Moreover, we obtain

$$f^{-1}(W) = X - f^{-1}(f(X - F))$$

 $\subset X - (X - F) = F.$

Theorem 3.9. Let $f: (X, \tau) \to (Y, \sigma, I)$ be a mapping and $\forall A \subset X$. Then the following statements are equivalent:

- (1) f is $S. \alpha^* I$ closed,
- $(2) S. \alpha^* Icl(f(A)) \subset f(cl(A)),$
- (3) $cl^*(int^*(cl^*(f(A)))) \subset f(cl(A))$.

Proof. (1) \Rightarrow (2) Let f be S. $\alpha^* - I$ – closed

and $A \subset X$. Since $f(A) \subset cl(f(A))$, Then

$$S. \alpha^* Icl(f(A)) \subset S. \alpha^* Icl(f(cl(A)))$$
$$= f(cl(A))$$

(2) \Rightarrow (3) Let $A \subset X$, then by (2) we have $cl^*(int^*(cl^*(f(A))))$

$$\subset cl^*(int^*(cl^*(S.\alpha^*Icl(f(A)))))$$

$$\subset S. \alpha^* Icl(f(A))$$

$$\subset f(cl(A)).$$

 $(3) \Rightarrow (1)$ Let A is closed in X, then by (3)

we have

$$cl^*(int^*(cl^*(f(A)))) \subset f(cl(A)) = f(A).$$

Hence f(A) is $S. \alpha^* - I$ – closed. This

shows that f is S. $\alpha^* - I$ – closed.

Theorem 3.10. A mapping $f:(X,\tau) \to (Y,\sigma,I)$ is $S.\alpha^* - I$ open if and only if $f^{-1}(cl^*(int^*(cl^*(V)))) \subset cl(f^{-1}(V))$, $\forall V \subset Y$.

Proof. Let f be S. $\alpha^* - I$ — open. Since $cl(f^{-1}(V))$ is closed set containing $f^{-1}(V)$, $\forall V \subset Y$, then it follows from Theorem 3.8 that there exists S. $\alpha^* - I$ — closed $W \subset Y$ such that $V \subset W$ and $f^{-1}(W) \subset cl(f^{-1}(V))$. Since $V \subset W$, then $f^{-1}(cl^*(int^*(cl^*(V))))$ $\subset f^{-1}(cl^*(int^*(cl^*(W))))$ and W is S. $\alpha^* - I$ — closed. Therefore, $f^{-1}(cl^*(int^*(cl^*(V))))$ $\subset f^{-1}(cl^*(int^*(cl^*(V))))$

Conversely, let $A \in \tau$, $Y - f(A) \subset Y$. Then by hypothesis

 $\subset f^{-1}(W)$

 $\subset cl(f^{-1}(V)).$

$$f^{-1}(cl^*(int^*(cl^*(Y - f(A)))))$$

 $\subset cl(f^{-1}(Y - f(A)))$

, this implies that

$$f^{-1}(Y - int^*(cl^*(int^*(f(A)))))$$

$$\subset cl(f^{-1}(Y - f(A)))$$

$$X - f^{-1}(int^*(cl^*(int^*(f(A)))))$$

$$\subset X - int(f^{-1}(f(A))).$$

Thus.

$$int(f^{-1}(f(A))) \subset$$
 $f^{-1}(int^*(cl^*(int^*(f(A)))))$. Wherefore,
$$A = int(A)$$

$$\subset int(f^{-1}(f(A)))$$

$$\subset f^{-1}(int^*(cl^*(int^*(f(A))))).$$
So,

 $\subseteq int^*(cl^*(int^*(f(A)))).$

This shows that f(A) is $S. \alpha^* - I$ — open. Hence f is $S. \alpha^* - I$ — open.

Theorem 3.11. A mapping $f:(X,\tau) \to (X,\tau)$ is $S: \mathbb{R}^*$. Learn if

$$(Y, \sigma, I)$$
 is $S. \alpha^* - I$ — open if $f(int^*(cl^*(int^*(A))))$

$$\subset int^*(cl^*(int^*(f(A)))), \forall A \in \tau.$$

Proof. Let $A \in \tau$, then

$$A = int(A) \subset int^*(cl^*(int^*(A))).$$

And by hypothesis we get

$$f(A) \subset f(int^*(cl^*(int^*(A))))$$
$$\subset int^*(cl^*(int^*(f(A)))).$$

Hence f(A) is $S. \alpha^* - I$ — open. This implies that f is $S. \alpha^* - I$ — open.

Theorem 3.12. If $f:(X,\tau) \to (Y,\sigma,I)$ is a $S. \alpha^* - I$ — closed mapping, then $\forall V \subset Y$ and $\forall A \in \tau$ such $f^{-1}(V) \subset A$, there exists $S. \alpha^* - I$ — open $W \subset Y$ and $V \subset W$ such that $f^{-1}(W) \subset A$.

Proof. let W = Y - f(X - A). Since $f^{-1}(V) \subset A$, then $f(X - A) \subset Y - V$. And since f is $S \cdot \alpha^* - I$ – closed, then W is $S \cdot \alpha^* - I$ – open and

$$f^{-1}(W) = X - f^{-1}(f(X - A))$$

 $\subset X - (X - A) = A.$

Theorem 3.13. A mapping $f:(X,\tau) \to (Y,\sigma,I)$ is $S.\alpha^* - I$ — closed if $cl^*(int^*(cl^*(f(A))))$ — $f(cl^*(int^*(cl^*(A)))), \forall (X-A) \in \tau$.

Proof. Let *A* is closed in *X*, then

$$cl^*(int^*(cl^*(A))) \subset cl(A) = A.$$

This implies that

$$f(\operatorname{cl}^*(\operatorname{int}^*(\operatorname{cl}^*(A)))) \subset f(A)$$

and by hypothesis we obtain

المجلد ۱۷، العدد (2)، ۲۰۲۳ م

 $cl^*(int^*(cl^*(f(A))))$

 $\subset f(cl^*(int^*(cl^*(A)))) \subset f(A)$.

Hence f(A) is $S. \alpha^* - I$ - closed.

This shows that f is S. $\alpha^* - I$ – closed.

4- Strong $\alpha^* - I$ – Separation Axioms in **Ideal Topological Spaces**

Definition 4.1. A (X, τ, I) is called strong $\alpha^* - I - T_0$ space (briefly $S. \alpha^* - I - T_0$) space) if for each pair of distinct points x, y of X, there exists a S. $\alpha^* - I$ – open set containing one point but not the other.

Theorem 4.5. A (X, τ, I) is a $S. \alpha^* - I - T_0$ space if every singleton $\{x\}$ is a S. $\alpha^* - I$ – closed set, $\forall x \in X$.

Proof. Let $x \neq y$ such that $x, y \in X$ and $\{x\}$ is $S. \alpha^* - I$ - closed, then $X - \{x\}$ is $S. \alpha^* - I$ - open such that $y \in X - \{x\}$ and $x \notin X - \{x\}$. Hence (X, τ, I) is a $S. \alpha^* - I T_0$ space.

Theorem 4.2. If (Y, σ, I) is a $S. \alpha^* - I - T_0$ space, then (X, τ, I) is a $S. \alpha^* - I - T_0$ space, when $f:(X,\tau,I)\to (Y,\sigma,J)$ be a S. $\alpha^* - I$ – irresolute injective mapping **Proof.** Let (Y, σ, I) is a $S. \alpha^* - I T_0$ space and $x, y \in X$ such that $x \neq y$ and $f(x) \neq f(y)$. Then there exists S. $\alpha^* - I$ open $G \subset Y$ such that $f(x) \in G$ but $f(y) \notin$ G. Since f is S. $\alpha^* - I$ – irresolute, then $f^{-1}(G)$ is $S. \alpha^* - I$ – open in (X, τ, I) such that $x \in f^{-1}(G)$ but $y \notin f^{-1}(G)$. Hence (X, τ, I) is $S. \alpha^* - I - T_0$ space. **Definition 4.3.** A (X, τ, I) is called strong $\alpha^* - I - T_1$ space (briefly $S. \alpha^* - I - T_1$

sets one containing x but not y and the other containing γ but not x.

Theorem 4.4. Let $f:(X,\tau,I)\to (Y,\sigma,J)$ be a $S. \alpha^* - I$ – irresolute injective mapping. Then (X, τ, I) is a $S. \alpha^*I - T_1$ space if (Y, σ, J) is a $S. \alpha^*I - T_1$ space.

Proof. Let (Y, σ, I) be a $S. \alpha^* - I - T_1$ space and $x, y \in X$ such that $x \neq y$ and $f(x) \neq$ f(y). Then there exists a pair of S. $\alpha^* - I$ open sets $G, H \subset Y$ such that $f(x) \in G$, $f(y) \in H$, $f(x) \notin H$ and $f(y) \notin G$. Since f is $S. \alpha^* - I$ - irresolute, then $f^{-1}(G)$ and $f^{-1}(H)$ are $S. \alpha^* - I$ – open such that $x \in$ $f^{-1}(G), y \in f^{-1}(H), x \notin f^{-1}(H) \text{ and } y \notin$ $f^{-1}(G)$. Hence (X, τ, I) is a $S. \alpha^{*-}I - T_1$ space.

Theorem 4.5. A (X, τ, I) is a $S. \alpha^* - I - T_1$ space If every singleton $\{x\}$ is a S. $\alpha^* - I$ closed set, $\forall x \in X$.

Proof. Let $x \neq y$ such that $x, y \in X$, $\{x\}$ is $S. \alpha^* - I$ - closed and $\{y\}$ is $S. \alpha^* - I$ closed, then $X - \{x\}$ is $S \cdot \alpha^* - I$ open and $X - \{y\}$ is $S \cdot \alpha^* - I$ open such that $y \in$ $X - \{x\}$ but $x \notin X - \{x\}$ and $x \in X - \{y\}$ but $y \notin X - \{y\}$. Hence X is a S. $\alpha^* - I - T_1$ space.

Theorem 4.6. Every S. $\alpha^* - I - T_1$ space is a $S. \alpha^* - I - T_0$ space.

Proof. Let (X, τ, I) be a $S. \alpha^* - I - T_1$ space and $x, y \in X$, $x \neq y$, then there exists a pair of $S. \alpha^* - I$ — open sets G, H such that $x \in G$ and $y \in H$ but $x \notin H$ and $y \notin G$. Since G is S. $\alpha^* - I$ – open such that $x \in$ G but $y \notin G$. Then (X, τ, I) is $S \cdot \alpha^* - I T_0$ space.

space) if for each pair of distinct points x, y

of X, there exists a pair of S. $\alpha^* - I$ – open

Definition 4.7. A space (X, τ, I) is called $S. \alpha^* - I - T_2$ space $(S. \alpha^* - I - \text{hausdorff})$ space) if for each pair of distinct points x, y of X there exists a pair of $S. \alpha^* - I - \text{open}$ sets G, H containing x and y respectively such that $G \cap H = \phi$.

Theorem 4.9. Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a $S. \alpha^* - I$ — irresolute injective mapping. Then (X, τ, I) is a $S. \alpha^* I - T_2$ space if (Y, σ, J) is a $S. \alpha^* I - T_2$ space.

Proof. Let (Y, σ, J) be a S. $\alpha^* - I - T_2$ space and $x, y \in X$ such that $x \neq y$ and $f(x) \neq f(y)$. Then there exists a pair of S. $\alpha^* - I - G$ open sets $G, H \subset Y$ such that $f(x) \in G$, $f(y) \in H$ and $G \cap H = \phi$. Since f is S. $\alpha^* - I - G$ irresolute, then $f^{-1}(G)$ and $f^{-1}(H)$ are S. $\alpha^* - I - G$ open sets such that $x \in G$ open sets

Theorem 4.10. If (X, τ, I) is a $S. \alpha^*I - T_2$ space, then for $x \neq y \in X$ there exists a $S. \alpha^* - I$ — open set G such that $x \in G$ and $y \notin S. \alpha^*Icl(G)$.

Proof. Let (X, τ, I) be a $S. \alpha^* I - T_2$ space. Let $x, y \in X$, then there exists a pair of $S. \alpha^* - I$ — open sets $G, H \subset X$ such that $x \in G, y \in H, G \cap H = \phi$. Therefore, X - H is $S. \alpha^* - I$ — closed such that $S. \alpha^* Icl(G) \subset X - H$. Since $y \in H$, then $y \notin X - H$. Hence $y \notin S. \alpha^* Icl(G)$.

Theorem 4.11. Every $S. \alpha^* - I - T_2$ space is a $S. \alpha^* - I - T_1$ space.

Proof. Let (X, τ, I) be a $S. \alpha^* - I - T_2$

space and $x, y \in X$, $x \neq y$, then there exists a pair of S. $\alpha^* - I$ — open sets G, H such that $G \cap H = \phi$, $x \in G$ and $y \in H$ but $x \notin H$ and $y \notin G$. Since G is S. $\alpha^* - I$ — open such that $x \in G$, $y \notin G$ and H is S. $\alpha^* - I$ — open such that $y \in H$, $x \notin H$. Then (X, τ, I) is S. $\alpha^* - I - T_1$ space.

Definition 4.12. A (X, τ, I) is called strong $\alpha^* - I$ — regular space (briefly $S. \alpha^* - I$ — regular space) if $\forall x \in X$ and each $S. \alpha^* - I$ — closed set F is not containing x, there exists disjoint $S. \alpha^* - I$ — open sets G and H such that $x \in H$ and $x \notin G$, $F \subset H$.

Definition 4.13. A $S. \alpha^* - I - T_1$ regular space is called $S. \alpha^* - I - T_3$ space.

Definition 4.14. A space (X, τ, I) is called strong $\alpha^* - I$ — normal space (briefly $S. \alpha^* - I$ — normal space) if for each two disjoint $S. \alpha^* - I$ — closed sets $F_1, F_2 \subset X$ there exists disjoint $S. \alpha^* - I$ — open sets G_1, G_2 such that $F_1 \subset G_1, F_2 \subset G_2$ and $G_1 \cap G_2 = \phi$.

Definition 4.15. A S. $\alpha^* - I - T_1$ normal space is called S. $\alpha^* - I - T_4$ space.

References

- [1] Açıkgöz, A.; Yüksel, S. and Noiri, T. (2004). On αI —continuous and αI open functions. *Acta Math. Hungar.*, 105(1-2): 27-37.
- [2] Aqeel, R. M.; Ahmed, F. A. and Gubran, R. (2023). between αI open sets and $S.P^* I$ open sets. *Acta Univ. Apulensis*, 74(8):117-136.
- [3] Aqeel, R. M. and Bin Kuddah, A. A. (2019). On strong semi*-*I* open sets in ideal topological spaces. *Univ. Aden J. Nat. and Appl.*, Sc.Vol.23 No.2.
- [4] Aqeel, R. M. and Bin Kuddah, A. A. (2019). On strong pre*-I-open sets in ideal topological spaces. *Journal of New Theory*, 28: 44-52.
- [5] Arenas, F. G.; Dontchev, J. and Puertas, M. L. (2000). Idealization of some weak separation axioms. *Acta Math. Hungar.*, 89(1-2): 47-53.
- [6] Bin Kuddah, A. A. (2019). A contribution to the study of ideal topological spaces. M.Sc. Faculty of Education, Aden University, Yemen.
- [7] Dontchev, J. (1995). On Hausdorff spaces via topological ideals and *I* irresolute function. *Annals of the New York*

Topology and Application, 767: 28-38. [8] Ekici, E. (2011). On AC_I —sets, β_I^* — open sets and decompositions of continuity

Academy of Sciences, Papers on General

- open sets and decompositions of continuity in ideal topological spaces. *Creat. Math. Inform.*, 20(1): 47-54.
- [9] Guler, A. C. and Aslim, G. (2005). b I open sets and decomposition of continuity
- Natl. Acad. Sci. Azerb., 22: 27-32. [10] Hatir, E. and Noiri, T. (2002). On decompositions of continuity via idealization. Acta Math. Hungar., 96(4): 341-349.

via idealization. Proc. Inst. Math. Mech.

- [11] Hatir, E. and Noiri, T. (2009). On Hausdorff spaces via ideals and semi–*I* irresolute Functions. *European Journal of Pure and Applied Mathematics*, 2(2): 172-181.
- [12] Jankovi'c, D. and Hamlett, T.R. (1990). New topologies from old via ideals. *Amer*. *Math. Monthly*, 97: 295-310.
- [13] Kuratowski, K. (1933). Topologies I, Warszawa.
- [14] Vaidyanathaswamy, V. (1945). The localisation theory in set topology. *Proc. Indian Acad. Sci.*, 20: 51-61.

تحليل الاستمرارية في الفضاءات التوبولوجية المثالية

فوزية عبدالله عبده أحمد قسم الرياضيات، كلية التربية

e-mail fawziaahmed89@yahoo.com

جامعة عدن، البمن

رضوان محمد سالم عقيل قسم الرياضيات، كلية العلوم جامعة عدن، اليمن e-mail rageel1976@yahoo.com

الملخص: في هذا البحث، قدمنا ودرسنا مفهوم جديد من مفاهيم الاستمرارية و هو (Strong α^*-I — continuity) و كذلك مفهومين جديدين من الرواسم المفتوحة والمغلقة على الفضاءات التوبولوجية المثالية و هما: (Strong α^*-I — closed mapping, Strong α^*-I —open mapping) ، درسنا بعض خصائص هذه المفاهيم، كما درسنا العلاقة بين كلًا من هذه المفاهيم وبعض المفاهيم المعرفة سابقًا في الفضاء التوبولوجي والفضاء التوبولوجي المثالي. و درسنا بديهيات فصل جديدة و هي: (Strong α^*-I — Separation Axioms) وبعض خصائصها.

الكلمات المفتاحية: الفضاءات التوبولوجية المثالية، الدوال المتصلة من النوع (strong $\alpha^* - I -)$)، الدوال المفتوحة والمغلقة من النوع (Strong $\alpha^* - I -)$) مسلمات الفصل من النوع (Strong $\alpha^* - I -)$).