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Abstract: The intention of this work is to study the concepts of strong a* — I —

continuity and strong a* — I — open (resp. closed) mappings in ideal topological spaces,

obtain several characterizations and some properties of these mappings and investigate its

relationship with other types of mappings. Also, we introduce strong a* — 1 —

separation axioms in ideal topological spaces and study some their characterize.
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1- Introduction and Preliminaries.

Quite recently, Hatir and Noiri [10]
established the concept of @ — I —
continuous functions and utilized it to derive
a decomposition of continuity. A¢ikgdz,
Noiri and Yuksel [1] established numerous
characterizations of @ — I — continuous
functions and to introduce and obtain the
features of @ — I — open functions in ideal
topological spaces. Dontchev [7] used ideals
to investigate Hausdorff spaces.

Arenas, Dontchev and Puertas [5] introduced
separation axioms in ideal topological spaces
by connecting an open or closed set with a

member of the ideal. These are referred to as

T, spaces. Hatir and Noiri [11] proposed and
investigated the concept of semi—I —
Hausdrorff spaces. Throughout this paper
cl(A) and int(A) denote the closure and the
interior of A, respectively. Let (X,7) be a
topological space and I an ideal of subsets of
X. An ideal is defined as a nonempty
collection I of subsets of X satisfying the
following two conditions [13]:

(1) fAeland B c A, thenB € I.

(2) fAelandB el , thenAUB € I.

An ideal topological space is a topological

space (X, 7 ) with an ideal I on X and is
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denoted by (X, t,1). Forasubset A c X,

A(Lt)={xeX:UNA ¢, foreach

neighborhood U € 7(X)} is called the local

function of A with respect to I and 7 [14].

We simply write A* instead of A*(I) in case

there is no chance for confusion. For every

ideal topological space (X, t, 1), there

exists a topology 7* (1), finer than

generated by f(I,7) =U—1:U € Tand

I € I, but in general (I, 7) is not always

atopology, additionally, cl*(A) = AU A*

defines a Kuratowski closure operator for

(D) [12].

In the form of Definition 1.1, we refer to the

results reported in [2 — 4, 8 — 10].

Definition 1.1. A subset A of an ideal

topological space (X, t,I) is called:

(1) S.S*— I —openif A c cl*(int*(4)),

(2) S.P*—1—openif A c int*(cl*(4)),

(3) « — I —openif A c int(cl*(int(A))),

(4) B* — 1 —openif A c cl(int*(cl(4))),

(5) b — I —openif A c cl*(int(A)) U

int(cl*(4)),

(6) strong a* — I — open if

A cint” (cl*(int*(A4))) .

We mention the following results in the form

of Definition 1.2 among the results reported

in[6, 8 - 10].

Definition 1.2. A mapping

f:(X,t,I) = (Y,0) is called:

(1) a — I — continuous if f~1(V) is

a —I—openinX,VV €o.

(2) S.S* — I — continuous if f~1(V) is
S.S*—I1—opensetinX,vVV €oao.

(3) S.P* — I — continuous if f~1(V) is
S.P*—1—openinX,vVV €o.

(4) B* — I — continuous if f~1(V) is
B*—I1—openinX,vVV €o.

(5) b —1I — continuous if f~1(V) is

b—I1—-openinX, VV €o.

2- Strong a* — I — Continuous Mappings

Definition 2.1. A mapping f: (X, t,1) =

(Y,o)iscalled S.a™ — I — continuous if

f~Y(V)isa S.a* — I — open set

in(X,t,1),VVeo.

Example 2.2. Let X =Y ={a, b, ¢, d},

t={¢,X,{a},{a,b},{a, b, c}},

o=1{¢,Y {a},{b,d} {a b,d}}and

[={¢,{a}}. 1 f:(X,7,]) > (Y, 0) defined

by: f(a) = a, f(b) =d, f(c) =b, f(d) =

c, then F~1(Y) =X, f~1(¢p) = ¢ and

f~Y(V)isS.a*—1—openVV € g. Hence

fis S.a™ — I — continuous.

The following diagram which holds for a

mapping f: (X, t,1) = (Y, 0).

continuous
a — I — continuous

S.a* — I — continuous

'

S.S* — I —continuous  S.P* — I —continuous

\/

— I — continuous
Fig. 1. The |mpI|cat|on between some
generalizations of continuous mapping.
Remark 2.3. The converse of these
implications in Fig.1 are not true in general

as shown in the following examples.
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Example 2.4. From Example 2.2 f is

S.a™ — I — continuous while £ is not

a — I — continuous because = ({b, d})
isS.a* — I — open, but f~1({b,d})

IS not @ — I — open.

Example 25. Let X =Y = {a, b, c,d},
t={¢, X, {c}{a, b, d}}, I = {¢,{a}},

o ={¢,Y,{a},{b},{a, b}}and f: (X,7,]) -
(Y,0) defined by: f(a) =c, f(b) = a,
f(c)=d, f(d)=b,thenfisS.P* -1 —
continuous, but itisnot S.a* — I —
continuous because f~1({a}) is

S.P* — I — open, while f~1({a})
isnotS.a* — I — open.

Example 2.6. LetX =Y ={a, b, c},
t={¢, X, {a}. {c}.{a, c}}, I = {¢,{b}},
o={¢ Y {a}{bc}}and f:(X,7,I) -

(Y, 0) defined by: f(a) = a, f(b) =,
f(c) =b.Wenoticethat fisS.S* —1 —
continuous, but itisnot S.a* — I —
continuous because f~1({b,c}) is S.5* —

I — open, but f~1({b, c}) is not

S.a* — 1 — open.

Example2.7. If X =Y = {a, b, c,d},
t={¢,X,{a},{a b}, {a,b,c}}, I = {¢,{a}},
o={¢, Y {c}{bc}} and f:(X,7,]) =

(Y, 0) defined by: f(a) =c, f(b) = a,
f(c)=b,f(d)=d,thenfisp*—1—
continuous but it not S.a™ — I — continuous
because f~1({b,c}) is B* — I — open,
while f~1({b, c})is not S.a* — I — open.
Remark 2.8. S.a* — I — continuous and

b — I — continuous are independent notions
Examples (2.9, 2.10).

Example 2.9. Let X =Y = {a, b, c,d},

A Decompositions of Continuity in Ideal Topological Spaces

t={¢,X,{a}.{a, b}, {a,b,c}}, I = {$,{a}},
o={¢, Y {c}{ac}}and f:(X,1,]) =

(Y, o) defined by: f(a) = a, f(b) = c,
f(c) =d, f(d) = b. Then we get that f is
S.a* — 1 — continuous butnot b — I —
continuous because f~({c})isS.a* — I —
open, while f~1({c}) is not b — I — open.
Example 2.10. Let X =Y = {a, b, c},
t={¢, X {a}{c}.{a,c}}, I = {¢,{b}},
o={¢,Y {a}{ac}}tand f: (X,7,I) =
(Y,0) defined by: f(a) = a, f(b) = c,
f(c) = b. Thenwe obtainfisb — I —
continuous, while fisnotS.a™ — 1 —
continuous because f~1({a, c}) is

b — I —open but f~*({a, c}) is not

S.a* — 1 — open.

Theorem 2.11 presents the relationship
between S.a* — I — continuous, S.a* — I —
closure and S.a* — I —interior

Theorem 2.11. Let f: (X,7,1) = (Y,0) be a
mapping. The following statements are
equivalent:

(1) fisS.a* — 1 — continuous,

(2) VvxeXandVV eagand f(x) eV,
3S.a"—1—openset W c X such that x €
W, f(w)cV.

) f~Y(V)isS.a* — I — closed, V closed
setV/ cvY.

4) f(S.a*Icl(A)) c cl(f(A),VAcCX.
(B) S.a*Icl(f~Y(V)) c f~Hcl(V)), VWV c
Y.

(6) f~1(int(V)) c S.a*lint(f~1(V)),

vV cY.

Proof. (1) = (2) Letx € X,V € o and

f(x) €EV.Putw = f~1(v), then by
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Definition 2.1 W is S.a™ — I — open such
thatx e W and f(W) c V.
(2) = (3) Let VV isaclosed set of Y. Put
E=Y—V,thenE € 0. Letx € f1(E),
then by (2) we have f(W) c E. Thus,

x €W cint*(cl*(int*(W)))

c int*(cl*(int*(f ~1(E))))
hence f~1(E) c int*(cl*(int*(f ~1(E)))).
This shows that f~1(E) is S.a* — I — open.
Hence

) =Xx—-f1Y-v)
=X—-f"YE).
This implies that f~1(V) is S. a* - I-closed.
(3)= (4) Let A c X, then f(A) c Y and
because f(A) c cl(f(A)), then
Ac Q) e fHl(fA)).
This implies that
S.a*Icl(A) c S.a*Icl(f~1(cl(f(A))))
= fH(cl(f (D))
and therefore,
f(S.a*lcl(A) < f(f(cl(f(A)
c cl(f(4)
Hence f(S.a*Icl(A)) c cl(f(A)).
(4)= (5) LetV c Y, then f~1(V) c X and
by (4) we get
f@S.a”Icl(f 71 (V) c cd(fF(F ()
c cl(V), therefore,
fHS S a led(fH))) © fH el (V).
Hence
S.a*lcl(f~1(V))
S ed(fTH D))

< fHel V).
5)=>(®)LetV cY,thenY —V c Y. Now
by (5) we have
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S.a*lcl(f~X(Y = V)) c f~i(cl(Y = V),
Therefore X — S.a*lint(f~1(V)) c X —
f~Y(int(V)). Hence
f~Yint(V)) c S.a*Iint(f ~1(V)).
(6) = (1) Let V € o, therefore
f1W) = fint(v))
c S.a*lint(f~1(V)).

Hence f~1(V)is S.a* — I — open VV € o.
This shows that f is S.a™ — I — continuous.
The following theorems explain some of
the characteristics of S.a* — I — continuous.
Theorem 2.12. Let f: (X,7,1) = (Y,0) be
mapping. Then the following statements are
equivalent:
(1) fisS.a* — I — continuous.
(2) cl(int™ (cl*(f~H (VD)) < fH(cl(V)),
vicyYt.
@) f(cl*(int™(cl*(A)))) © cl(f(A)), VA c
X.
Proof. (i) = (ii) Since fisaS.a* — 1 —
continuous, cl(V) is closed, then by
Theorem 2.11 (3) £~ (cl(V)) isS.a* — I —
closed VV c Y and we have
cl*(int”™ (" (f (V) €
cl”(int™ (el (f ~H(el(V))))) < f~H{(cl(V)).
Hence
cl(int™ (" (f 7T V) < f7H(el(V)) -
(2) = (3) Let A c X, then f(A) c Y and by
(2) we have

cl(int™ (cl"(f 1 (F(AN))) <
fY(cl(f(A))). Therefore,

cl*(int*(cl*(A)))
c cl*(int*(cl*(f " (f (A)))))
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< fHl(f (D).

Hence

f (el (int™ (cl"(A))) < f(f T (cl(f (D))

< cl(f(A).

B)=>@Q)LetVeo,thenf 1 (Y-V)cX

and by (3)

f el (int™(cl"(f 1Y = V)))))
cc(ffFH Y =)
ccl(Y-V)=Y-V.

Therefore,

fX —int*(cl*(int*(f (V) cY —V.

Hence

X —int*(cl*(int*(f~1(V))))

& —int" (el (int" (F TV NN))

cfry-Vv)

= X-f"1.

Thus, f~1(V) < int*(cl*(int*(f (V).

Hence f~1(V) is S.a* — I — open. This

shows that f is S.a™ — I — continuous

Theorem 2.13. Let f: (X,7,I) = (Y,0) bea

bijective mapping. Then fisS.a* =1 —

continuous if and only if int(f (A)) c

f(S.a*lint(A)), VA c X.

Proof. Let f bea S.a* — I — continuous,

VA c X, then f~1(int(f(A))isS.a* — I —

open. Because f is bijective and by Theorem

2.11 (6) we have

int(f(A)) = f(f ~(int(f(4))))

C f(S.a™lint(f 71 (f(A))))
= f(S.a’lint(A4)).

Hence int(f (A)) c f(S.a*lint(4)).

Conversely, letV € g, then V = int(V) and

by hypothesis we obtain

V =int(V)
= int(f(f ' (V)))

c f(S.a*lint(f~1(V)))
hence V c f(S.a*lint(f~1(V))) this
implies that

fW) e fFHS S atlint(FH(V))))
= S.a*lint(f~1(V))
therefore, f~1(V) c S.a*lint(f~1(V)).
Hence f~1(V) is S.a* — I — open. This
shows that f is S.a™ — I — continuous.
Corollary 2.14. Let f: (X,1,1) = (Y,0) be
a bijective mapping. Then fisS.a* — I —
continuous if and only if int(f(A4)) c
f(int*(cl*(int*(A4)))), VA c X.
Proof. Let f be bijective S.a™ — I —
continuous, then by Theorem 2.13 we get
int(f(4)) c f(S.a"lint(A))
c f(int*(cl*(int*(S.a*lint(A)))))
c f(int*(cl*(int*(A)))).
Conversely, letV € g, f~1(V) c X. Since f
is bijective and by hypothesis we
Obtain
V = int(V)
= mnt(f(f())
c f(int™(cl*(int"(f 71 (V))).
Therefore,
f7m
c fH(f (nt™ (el (nt™ (FH(V)HN))
= int*(cl*(int*(f ~1(V)))).
Hence f~1(V) is S.a* — I — open. This
shows that f is S.a™ — I — continuous.
Remark 2.15. If f: (X,7,1) = (Y,0,]) and
g Y,0])->(ZpaeS.a*—1-—
continuous mappings, then the composition
g -° f:(X,t,I) = (Z, 1) may not be a
S.a* — I — continuous mapping. This can be

shown by the following example.
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Example 2.16. LetX =Y =Z = {a, b, c,d},
T ={$,X,{c}.{a,b,d}}, I = {¢,{a}} be an
ideal on X, 0 = {¢,Y,{a},{b,c},{a, b, c}},

] ={¢,{a},{d},{a,d}} be an ideal on Y and
u=1{¢,Z2{a}{ab,d}}. If f: (X,7,I) -
(Y,0,])and g: (Y,0,]) = (Z, u) defined as
following: f(a) = d, f(b) = b, f(c) = a,
f(d)=c g(a)=a, g(b) =c g(c)=b,
g(d)=d,thengand fareS.a* -1 —
continuousbut g - f: (X,t,I) = (Z,p) is
not S.a* — I — continuous because

(g ° N *{a b,d}) = {a,c,d}isnot

S.a* — 1 — open.

Definition 2.18. A mapping f: (X,t,1) =
(Y,o0,]) iscalled S.a* — I — irresolute if
f~Y(V)isaS.a*— 1 — opensetin (X,1,1)
forevery S.a* — I —opensetV c Y.
Theorem 2.19. Let f: (X,t,1) = (Y,0,]) be
a mapping. Then the following statements
are equivalent:

(1) fisaS.a* — I — irresolute,

(2)vxe XandeachS.a* —I —openVinY
such that f(x) € V, thereexists Ais S.a™ —
I —openin X suchthatx € Aand f(A) c
v,

(B) f~Y(V)isaS.a* — I — closed set, for
each S.a" — I — closed set Vin X.

Proof. (1) => (2) Letx e X, VisS.a* —1 —
openinY and f(x) € V. Put

A = f~1(V), then by Definition 2.18 A is
S.a” — I — open in X such that x € A and
f(A) cV.

2)=> @) LetVisS.a*—1—closedof Y.
PutE =Y —V,thenEisS.a*—1—openin

Y. Let x € f~1(E), then by (2) we have
f(A) C E. Thus,
x € A cint*(cl*(int*(A)))
c int*(cl*(int” (f~1(E))))

hence
fYE) cint*(cl*(int*(f ~1(E)))). This
shows that f~1(E)is S.a* — I — open.
Since

fAV)=X-f71Y-v)

= X - f7H(E)

This implies that f~2(V ) is S.a* — I —
closed.
B)=>Q)ifVbeS.a*—1I1—closedinY,
thenY —VisS.a*—1 —openinY. By (3)
f~Y(V)isS.a* — I — closed in X and
fW) 2 el (int (" (fH(V)))
X—f'(V) c X —cl"(int" (" (fTH(V))))
fYY = V) cint*(cl*(int*(f (Y —
)))),so f~1(Y —=V)isS.a* — I — open in X.
Hence fisS.a* — I — irresolute.
Theorem 2.17.If f: (X,1,1) = (Y,0) isa
S.a* — I — continuous mapping and
g:(Y,a) = (Z, 1) isacontinuous mapping,
theng - f:(Y,0,]) - (Z,p)isaS.a* —
I — continuous mapping.
Proof. Let V € u. Since g is continuous,
then g71(V ) € 0. And since f is S.a* —
I — continuous, then (g * f)~Y(V) =
Y g~ (V))is S.a* — I — open.
Hence g ° fisS.a™ — I — continuous.
Theorem 2.21. Let f: (X,7,1) = (Y,0,))
and g: (Y,a,]) = (Z,u,) be mappings. Then
Then g - f:(X,t, ) > (Z,p)isS.a" =1 —

continuous if g is S.a* — I — continuous
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and fis S.a™ — I — irresolute.

Proof. LetV € u.SincegisS.a* — I —
continuous, then g=*(V) is S.a* — I —
open. And since f is S.a* — I — irresolute,
then (g = HT'(WV) =f1 (g (V) is
S.a*—I1—open.Henceg ° fisS.a* —

I — continuous.

Theorem 2.22. Let f: (X,7,1) = (Y,0,))
and g: (Y,0,]) = (Z, 1, §) be mappings.
Then g - f:(X,t,1) = (Z,u,6)is S.a™ —
I —irresolute if both g and f are S.a™ — I —
irresolute.

Proof. LetVisS.a® — I — openin Z. Since
gisS.a* —I — irresolute, then g=1(V) is
S.a*—1—open. Andsince fisS.a* —1 —
irresolute, then (g * f)~1(V) =
f~Yg 1 (V))isS.a* — I — open.

Hence g - fisS.a” — I — irresolute.
Theorem 2.23. Let f: (X,7,1) = (Y,0) be a
mapping. Then f isa S.a* — I — continuous
mapping if f is both S. P* — I — continuous
and S.S* — I — continuous mappings.
Proof. It follows from (Theorem 10, [2]).

3- Strong a*- I - Open (Closed) Mappings
Definition 3.1. A mapping f: (X, 1) =
(Y,o,1)iscalled S.a* — I — open if the
f(A)isaS.a* —1—opensetin (Y,ao,I),
VA ET.

Definition 3.2. A mapping f: (X, 1) =
(Y,o,1)iscalled S.a* — I — closed if f(F)
isaS.a* — 1 —closed setin (Y,o,1),

for each closed set F in (X, 7).

As an example of S.a™ — I — open(closed)
mappings, we give the following examples.
Example3.3.Let X =Y ={a, b, c,d},

t={¢ X {d}.{a,c,d}, 0 ={9,Y, {c},
{b,c}.{b,c,d}}, I = {¢,{a}, {b}, {c},
{a,b},{a,c},{b,c}{ab.c}}.If f:(X,T) -
(Y,a,1) defined by: f(a) =d, f(b) =c,
f(c) =a, f(d) =b,then f(X) =Y,
f(p)=¢and f(A)isS.a” — 1 — open

VA € t. Hence fisS.a™ — I — open.
Example 3.4. LetX =Y ={a, b, c,d},
t={¢ X, {d}{a,c,d}}, 0 ={9,Y,{c},
{b,c}{c,d}.{b,c,d}}, I = {¢,{a},{D},
{c},{a,b},{a,c},{b,c},{a,b,c}}and
f:(X,t) = (Y,0,]) defined by: f(a) = b,
f(b) =a, f(c) =d, f(d) =c. Then
fX)=Y,f(¢)=¢and f(F)isS.a” -

I — closed for each closed set F c X. Hence
fisS.a” — 1 — closed.

Theorem 35. f: (X,7) = (Y,0,]) isS.a" —
I —open if and only if Vx € X and each
neighborhood U of x, there exists S.a* —

I — opensetV cY, f(x) € VsuchthatV c
f().

Proof. Suppose that f is S.a™ — I — open.
Then Vx € X and each neighborhood U of x,
there exists U, € 7 such that x € U, c U.
Since fisS.a* —1 —open,V = f(U,) is
S.a*—I1—openinYand f(x) € V c f(U).
Conversely, let U € t. Then Vx € U, there
exists V, is S.a™ — I — open in Y such that
f(x) €V, c f(U). Therefore, we obtain
f(U) =u {V, : x € U} and hence by
(Theorem 17 (2), [2]), f(U) is S.a*- I -open.
This shows that f is S.a™- I -open.

Theorem 3.6 presents the relationship
between S.a* — I — open mapping, S.a* —

I — closure operatorsand S.a* — I —
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interior operators.
Theorem 3.6 Let f: (X,t) = (Y,0,]) be a
mapping. Then the following statements are
equivalent:
(1) fisS.a* — 1 — open.
(2) f(int(A)) c S.a*lint(f(A)), VA c X.
(3) int(f~1(V)) c f~1(S. a*lint(V)),
vicY.
(4) F1(S. a*Icl(V)) € cl(FL(V)), WV C Y.
(5) f(int(A)) < int*(cl"(int™(f (A)))),
VA c X.
Proof. (1) = (2) Let f be S.a* — I — open
and A c X, then f(int(A)) < f(A). This
implies that

S.a*lint(f (int(A))) c S.a*lint(f (4))
, but f(int(A)) is S.a™ — I — open.
Therefore,

f(int(A)) = S.a*lint(f (int(A)))

c S.a*lint(f (A)).

(2)= (3) LetV c Y, then f~1(V) c X and

by (2)

fint(f~1(V))) € S.alint(f(f~H(V)))
c S.a’lint(V).

So,

int(f~*(V)) < fH({fnt(f~H(V))))

c f71(S. a*lint(V)).
3=>@) LetV cY,thenY —V cY andby
(3) we have
int(f~Y(Y —V)) c f71(S.a*lint(Y —V)).
Thus,

X—cl(f1(V) c f~Y Y = S.a*Icl(V))
=X — f1(S. a*Icl(V)).

Hence f~1(S.a*Icl(V)) c cl(f~1(V)).

4)=>0B)LetAc X, thenY — f(A) cY

A Decompositions of Continuity in Ideal Topological Spaces

and by (4), we get
(S atlcl(Y = f(A)))
Ccl(f (Y = f(A))
7YY = S.a*lint(f (A)))
CclX = @A)
X — f71(S. a*lint(f (A)))
c X —int(f 1 (f ().
This implies that
int(f 1 (f(A)) < f~1(S. a"Tint(f (4))).
Wherefore,
int(4) c int(f~1(f(4)))
c f7I(S. a*lint(f (4))).
Hence
f(int(4)) < f(f1(S. a’lint(f (4))))
c S.a’lint(f(A)).
Which shows that
f(int(4))
c int*(cl*(int*(S.a*lint(f (A))))
c int*(cl*(int*(f (A)))).
(5) = (1) Let A € 1, then by hypothesis we
have
f(4) = f(int(A4))
c int*(cl*(int*(f (A)))).
Hence f(A) isS.a™ — 1 — open. Thus f is
S.a* — 1 — open.
Theorem 3.7. Let f: (X,7) = (Y,0,]) be a
bijective mapping and V VV c Y. Then the
following statements are equivalent:
(1) fisS.a* — I — closed.
2) f71(S.a™Icl(V)) < cl(fH(V)),
() int(f~1(V)) c f71(S. a*lint(V)),
(4) int(f~1(V)) < f~H(int™ (cl" (int" (V)))).
Proof. (1) = (2) Since fisS.a* —1 —
closedand V c Y, then
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S.a*lcl(V) = S.a*Icl(f(f~1(V)))
c S.a’lcl(f(cl(F (M)
c flfF M.
Therefore,
fHS alel(V)) < fTHS 1))
= cl(fTt V).
(2)= @) LetV cY,thenY —V c Y and by
(2) we have
IS a*Icl(Y = V) c cl(f~H(Y = V).
So,
X — f7Y(S. a*lint(V)) € X — int(f~1(V))
Thus
int(f1(V)) c f7YS. a*Iint(V)).
(3)= (4) LetV c Y, then by (3)
int(f~1(V)) c f~1S.a*lint(V))
c fi(int*(cl*(int*(S.a*lint(V)))))
c f(int*(cl*(int*(V)))).

(4) = (1) Let F is closed in X, then
Y — f(F) cY and by (4) we get
int(f~1(Y — f(F)))

c fH(nt” (cl" (int* (Y = £ (F)))))
X—c(f @)

X — fH(cl" (int" (el (f (F)))))
This implies that
f7H el (int™ (e (f (F)))))

c cl( f7Y(f(F))). Therefore,
f7H el (int™ (e (f (F))))

cc(fTHEED)

=cl(F) =F.
Thus,
cl*(int™(cl"(f (F))))
= f(f (el (int™ (cl" (F (F)))))
c f(F).

This shows that f(F) is S.a™ — I — closed.
So, fisS.a” — I — closed.

A Decompositions of Continuity in Ideal Topological Spaces

Theorem 3.8. If f: (X,t) —» (Y,0,1)isa
S.a* — I — open mapping, then vV c Y and
each closed set F c X such that f~*(V) c
F,there existsa S.a™ — I — closed set W c
Y suchthatV ¢ Wand f~Y(W) cF.
Proof. suppose that fis S.a* — I — open.
Let V c Y and each closed set F < X such
that F o f~1(V). Then X — F € 7. And
since fisS.a* — I — open, then f(X — F) is
S.a*—1—open.Hence W =Y — f(X — F)
isS.a” — 1 —closed in Y. It follows from
f~Y(V) c F that V ¢ W. Moreover, we
obtain
ffWM =Xx-f(fX-F))
cX—(X-F)=F,

Theorem 3.9. Let f: (X, 1) = (Y,0,1) bea
mapping and V A < X. Then the following
statements are equivalent:
(1) fis S.a® — 1 — closed,
(2) S.a”Icl(f(A)) < f(cl(A)),
3) cl*(int™(cI"(f (A)))) < f(cl(A)).
Proof. (1) = (2) Let f be S.a™ — I — closed
and A c X. Since f(A) c cl(f(A)), Then

S.a*Icl(f(A)) c S.a"Icl(f(cl(A)))

= f(cl(A))

(2) = (3) Let A c X, then by (2) we have
cl*(int*(cl*(f(4))))

c cl*(int*(cl*(S.a*Icl(f (A)))))

c S.a*lcl(f(A))

c f(cl(4)).
(3) = (1) Let A is closed in X, then by (3)
we have
cl*(int*(cl"(f(4)))) < f(cl(A)) = f(A).
Hence f(A) is S.a* — I — closed. This

shows that f is S.a* — I — closed.
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Theorem 3.10. A mapping f: (X, t) =
(Y,o,1)isS.a* — 1 — open if and only if
f7H (el (int" (el (VD)) < cl(f 71 V),
vicY.

Proof. Let f be S.a™ — I — open. Since
cl(f~1(V)) is closed set containing f~1(V ),
VYV c 'Y, then it follows from Theorem 3.8
that there exists S.a* — I — closed

W c Y suchthatV ¢ W and

fI(W) c cl(f~1(V)). Since V. c W, then
f7 (el (int™ (" (V))))

c fH(el" (int" (" (W))))
and Wis S.a™ — I — closed. Therefore,
f7H (el (int” (" (V))))

c f7H (el (int" (cl” (W))))
c fT (w)
< cl(fTHV)).
Conversely, let A€ t,Y — f(A) c Y. Then
by hypothesis
f7Hel (int™ (el (Y = f(A)))))
Ccl(fTHY = f(A))
, this implies that
fHY = int* (cl* (int™ (f (A)))))
c c(fTHY = f(A)))
X — f7(int™ (cl" (int™ (£ (A)))))
c X —int(f 7 (f(A)).
Thus,
int(f~1(f(A)) <
fY(int*(cl*(int*(f (A))))) . Wherefore,
A =int(A)
c int(f 1 (f(A)))
c fH(int" (cl" (int* (f (A))))).
So,
f(A) < f(f ~*(int" (cl"(int" (f (A)))))

A Decompositions of Continuity in Ideal Topological Spaces

c int*(cl*(int*(f (A)))).
This shows that f(A) is S.a* — I — open.
Hence fis S.a™ — I — open.
Theorem 3.11. A mapping f:(X,7) —
(Y,o,1)isS.a” — I — open if
f (int™(cl* (int"(4))))

c int*(cl*(int*(f(A)))), VA € 1.

Proof. Let A € 7, then
A =int(A) c int*(cl*(int*(A))).
And by hypothesis we get
f(4) < f(int*(cl*(int"(A))))

c int*(cl*(int*(f (4)))).
Hence f(A) isS.a™ — I — open. This
implies that f is S.a™ — I — open.
Theorem 3.12. If f: (X,7) —» (Y,0,1) isa
S.a* — I — closed mapping, thenvVV c Y
and V A € T such f~1(V) c A, there exists
S.a*—I1—openW cYandV c W such
that f~1(W) c A.
Proof. letW =Y — f(X — A). Since
fY(V) c A, then f(X —A) c Y —V. And
since fisS.a* — I — closed, then W is
S.a* — I —open and

frW) =X —f(f(X - 4))

cX-(X-4)=A.

Theorem 3.13. A mapping f: (X, 1) -
(Y,o,1)is S.a* — I — closed if
cl*(int™(cl*(f(4)))

c f(cl*(int*(cl*(4)))), V(X — A) €.
Proof. Let A is closed in X, then
cl*(int*(cl* (A))) c cl(A) = A.

This implies that
fCcl*(int™(cl” (A)))) < f(A)
and by hypothesis we obtain
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cl*(int™(cl*(f(4))))

< f(cl*(int*(cl*(A)))) © f(4) .
Hence f(A) isS.a™ — I — closed.
This shows that f is S.a* — I — closed.
4- Strong a* — I — Separation Axioms in
Ideal Topological Spaces
Definition 4.1. A (X, t,I) is called strong
a* —1—T,space (briefly S.a* —1 =T,
space) if for each pair of distinct points X, y
of X, there existsa S.a* — I — open set
containing one point but not the other.
Theorem 45 . A (X,t,)isaS.a*—1—T,
space if every singleton {x}isaS.a* — I —
closed set, Vx € X.
Proof. Let x # y such that x,y € X and {x}
isS.a* — I — closed, then X — {x} is
S.a*—1— opensuchthaty € X — {x} and
x & X —{x}. Hence (X,t,I)isaS.a" —1 —
T, space.
Theorem 4.2.If (Y,o,)isaS.a*—1—T,
space, then (X, t,I)isaS.a*—1—T,
space, when f: (X,t,1) = (Y,0,]) be a
S.a™ — I — irresolute injective mapping
Proof. Let (Y,o,)isaS.a" —1 —
T, space and x,y € X such that x # y and
f(x) # f(y). Then there exists S.a™ — I —
open G c Y such that f(x) € G but f(y) ¢
G. Since fis S.a* — I — irresolute,
then f~1(G) is S.a* — I —openin (X, t,1)
such that x € f~1(G) buty ¢ f~1(G).
Hence (X,7,1)is S.a™ — 1 — T, space.
Definition 4.3. A (X, 7, 1) is called strong
a* —1—T, space (briefly S.a* -1 — T,
space) if for each pair of distinct points x, y

of X, there exists a pair of S.a™ — I — open

sets one containing x but not y and the other
containing y but not x.

Theorem 4.4. Let f: (X,t,I1) = (Y,0,]) be
aS.a* — I —irresolute injective mapping.
Then (X,t,1)isaS.a*l — T, space if
(Y,o0,])isaS.a*l — T, space.

Proof. Let (Y,o,/)bea S.a* — I — T, space
and x,y € X suchthat x # y and f(x) #
f(y). Then there exists a pair of S.a™ — I —
open sets G, H c Y such that f(x) € G,
f(y) €EH, f(x) ¢ Hand f(y) & G.Since f
isS.a* — I — irresolute, then f~1(G) and
f~Y(H) are S.a* — I — open such that x €
fHGE), yef'(H),x&f'(H)andy ¢
f~Y(G). Hence (X, 7, isaS.a* I —T,
space.

Theorem 45. A (X,t,)isaS.a*—1—T;
space If every singleton {x}isaS.a" — 1 —
closed set, Vx € X.

Proof. Letx # y suchthatx,y € X, {x}is
S.a*—1— closedand {y}isS.a"—1 —
closed, then X — {x}is S.a* — I — open and
X —{y}isS.a*—1— opensuchthaty €
X—{x}butx ¢ X —{x}andx € X — {y}
buty ¢ X —{y}.Hence X isaS.a*—1—T,
space.

Theorem 4.6. Every S.a* — [ — T;Space is a
S.a* — I — T,Space.

Proof. Let (X,7,[)beaS.a*—1—-T,
space and x,y € X, x # y, then there exists
apairof S.a* — I — open sets G, H such
thatxe Gandy e Hbutx ¢ Hand y € G.
Since GisS.a* — 1 —opensuch that x €

G buty &G.Then (X,t,1)is S.a" =1 —

T, space.
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Definition 4.7. A space (X, t,I) is called
S.a* —1—T, space (S.a* — I — hausdorff
space) if for each pair of distinct points x, y
of X there exists a pair of S.a* — I — open
sets G, H containing x and y respectively
suchthat G N H = ¢.

Theorem 4.9. Let f: (X, t,I) = (Y,0,]) be
aS.a* — I — irresolute injective mapping.
Then (X,t,I)isaS.a*l — T, space if
(Y,o,])isaS.a"l — T, space.

Proof. Let (Y,o0,/) bea S.a* — I — T, space
and x,y € X such that x # y and f(x) #

f (). Then there exists a pair of S.a* — I —
open sets G, H c Y such that f(x) € G,
f(y)eHandGNH=¢.Since fisS.a” —
I — irresolute, then f~1(G) and f~1(H) are
S.a* — I — open sets such that x €
fHG),yeft(Hand f7H6G) N
f~1(H) = @. This shows that (X,7,1) isa
S.a* — 1 —T, space.

Theorem 4.10. If (X,t,1)isaS.a*l —T,
space, then for x # y € X there exists a
S.a* — I — open set G such that x € G and
y &S.a’lcl(G).

Proof. Let (X,7,1)beaS.a*I — T, space.
Let x, y € X, then there exists a pair of
S.a* —1— opensets G,H c X such

thatx € G,y € H, G N H = ¢. Therefore,
X —HisS.a* — I — closed such that
S.a*lcl(G) c X — H.Sincey € H, then
yé&X—H.Hencey ¢ S.a*Icl(G).
Theorem 4.11. Every S.a™ — I — T,Space is
aS.a* — 1 — T;space.

Proof. Let (X,t,[)beaS.a*—1—-T,

space and x,y € X, x # y, then there exists
apairof S.a* — I — open sets G, H such
thatGNH=¢,xeGandy € Hbutx ¢ H
andy & G. Since G is S.a™ — I — open such
thatx e G,y € Gand HisS.a* — [ — open
suchthaty € H,x & H. Then (X,t,1) s

S.a* — I — T, space.

Definition 4.12. A (X, t,1) is called strong
a* — I — regular space (briefly S.a* — I —
regular space) if Vv x € X and each S.a™ —
I — closed set F is not containing x, there
exists disjoint S.a* — I — open sets G and H
suchthatx e Hand x ¢ G, F C H.
Definition 4.13. AS.a* — I — T, regular
space is called S.a™ — I — T space.
Definition 4.14. A space (X, t,I) is called
strong a* — I — normal space (briefly
S.a* — I — normal space) if for each two
disjoint S.a* — I — closed sets F;, F, c X
there exists disjoint S. ™ — I — open sets
G4, G, such that F; € G4, F, € G, and

G, NGy = ¢.

Definition 4.15. AS.a* — I — T, normal

space is called S.a™ — I — T, space.
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