

On Pseudo T-Trirecurrent Finsler Space in Berwald Sense

Wafa`a H. A. Hadi

Dept. of Maths., Community college -Aden

Abdalstar Ali Mohsen Saleem

Dept. of Maths., Faculty of Sciences, Univ. of Aden

Abstract: In this present paper, we introduce a Finsler space which pseudo curvature tensor satisfies the trirecurrence property in sense of Berwald. Certain identities belong to this space have been studied. Finally, the trirecurrence property in a projection on indicatrix with respect to Berwald connection has been discussed

Keywords: pseudo T-Trirecurrent, flat pseudo T-Trirecurrent, projection on indicatrix.

1.Introduction.

The recurrence property has been studied by the Finslerian geometrics. Sinha [16] introduced the torsion tensor T_{ik}^{i} and curvature tensor T_{ikh}^{i} from the division tensor T_i^i . Dabey and Singh [2] and Pandey and Dwivedi [5,6] considered the space equipped curvature tensor T_{jkh}^{i} is recurrent and called it T-recurrent Finsler space. They also considered there in projectively flat-Trecurrent space and obtained certain results belong to these spaces. Saleem [11] studied the flat of recurrent curvature tensor fields in Finsler space. Further, Qasem and Saleem [9], Pandey and Verma [7], Saleem and Abdallah [14], Singh [15] and Sinha [16] were studied on birecurrent curvature tensor fields in Finsler space. Saleem and Abdallah [13] study the projection on indicatrix for

some tensors whose satisfy the birecurrence Saleem and Abdallah property. [13] considered the space equipped curvature tensor T_{ikh}^{i} is birecurrent and called it Tbirecurrent Finsler space. They also considered there in projectively flat-Trecurrent space and obtained certain results belong to these spaces. Let us consider an ndimensional Finsler space F_n equipped with the line elements (x, y) and the fundamental metric function F is positively homogeneous of degree one in y^i .

Berwald's covariant derivative of the vector y^{j} vanish identically. i. e.,

(1.1) a) $\beta_l y^j = 0$, b) $\beta_l l^j = 0$, c) $\beta_l F = 0$ and d) $l^j = \frac{y^j}{F}$.

Definition 1.1. The projection of any tensor T_i^i on indicatrix is given by [3]

(1.2)
$$p.T_j^i = T_\beta^\alpha h_\alpha^i h_j^\beta$$
,

where the angular metric tensor is homogeneous function of degree zero in y^i and defined by

(1.2)
$$h_j^i := \delta_j^i - l^i l_j$$
.

Definition 1.2. If the projection of a tensor T_j^i on indicatrix I_{n-1} is the same tensor T_j^i , the tensor is called an indicatrix tensor or an indicatory tensor.

In flat pseudo T-birecurrent space, the curvature tensor H_{jkh}^{i} , torsion tensor H_{kh}^{i} , division tensor H_{h}^{i} , Ricci tensor H_{jk} , curvature vector H_{k} and curvature scalar H are birecurrent ,i.e. [13]

(1.3)
$$\beta_m \beta_l H^{i}_{jkh} = a_{lm} H^{i}_{jkh}$$

(1.4)
$$\beta_m \beta_l H^i_{kh} = a_{lm} H^i_{kh}$$

(1.5)
$$\beta_m \beta_l H_h^i = a_{lm} H_h^i$$

(1.6)
$$\beta_m \beta_l H_{kh} = a_{lm} H_{kh}$$

(1.7)
$$\beta_m \beta_l H_h = a_{lm} H_h$$

(1.8) $\beta_m \beta_l H = a_{lm} H$.

2. PRELIMINARIES

In this section, we introduce some important concepts and definitions.

:

The pseudo division tensor T_j^i is positively homogeneous of degree 2 in y^i and defined by [16]:

(2.1)
$$T_j^i = -\{H\delta_j^i + \frac{1}{n+1}(\dot{\partial}_r H_j^r - \dot{\partial}_j H)y^i\}.$$

The pseudo torsion tensor T_{jk}^{i} is positively homogeneous of degree 1 in y^{i} and defined by:

(2.2)
$$T_{jk}^{i} = \frac{1}{n+1} \{ y^{i} \mathbf{H}_{rkj}^{r} + 2\delta_{[j}^{i} (H_{k]} + \dot{\partial}_{k]} H \} \}.$$

The pseudo curvature tensor T^{i}_{jkh} is positively homogeneous of degree 0 in y^{i} and defined by:

$$(2.3) T^{i}_{jkh} = \frac{1}{n+1} \{ \delta^{i}_{[j} H^{r}_{k]hr} + y^{i} \dot{\partial}_{j} H^{r}_{rkh} + 2\delta^{i}_{[k} (H_{j]h} + \dot{\partial}_{h} \dot{\partial}_{j} H) \}.$$

From tensor S. P. Sinha [16] obtained the tensors as follows:

(2.4) a)
$$T_{jk}^i = \frac{2}{3} \dot{\partial}_{[j} T_{k]}^i$$

and b) $T_{jkh}^i = \dot{\partial}_j T_{kh}^i$.

The curvature tensor T_{jkh}^{i} and torsion tensor T_{kh}^{i} satisfies the following identities (2.5) a) $T_{jkh}^{i}y^{j} = T_{kh}^{i}$ and b) $T_{kh}^{i}y^{k} = T_{h}^{i}$. Also, this tensors satisfies the following:

(2.6) a)
$$T^i_{jkh} = W^i_{jkh} - H^i_{jkh}$$
,

b) $T_{kh}^{i} = W_{kh}^{i} - H_{kh}^{i}$ and c) $T_{k}^{i} = W_{k}^{i} - H_{k}^{i}$. The curvature tensor H_{jkh}^{i} , the torsion tensor H_{jk}^{i} and the division tensor H_{j}^{i} are positively homogeneous of degree zero, one and two in y^{i} , respectively. The curvature tensor H_{jkh}^{i} is skew -symmetric in their lower indices satisfy the following:

(2.7) a) $H_{jkh}^{i}y^{j} = H_{kh}^{i}$, b) $H_{kh}^{i}y^{k} = H_{h}^{i}$, c) $H_{jki}^{i} = H_{jk}$, d) $H_{jk}y^{j} = H_{k}$, e) $H_{k}y^{k} = (n-1)H$, g) $H_{i}^{i} = (n-1)H$

The Bianchi identities for curvature tensor H_{jkh}^{i} is given by

$$l) \ \ H^{i}_{jkh} + H^{i}_{khj} + H^{i}_{hjk} = 0.$$

The projective curvature tensor W_{jkh}^{i} , the torsion tensor W_{jk}^{i} and the division tensor W_{j}^{i} are positively homogeneous of degree

Volume 17, Issue (2), 2023

zero, one and two in y^i , respectively. And satisfy the following: [15]

(2.8) a)
$$W_{jkh}^{i} y^{j} = W_{kh}^{i}$$
, b) $W_{kh}^{i} y^{k} = W_{h}^{i}$
and c) $W_{jki}^{i} = 0$.

The Bianchi identities for projective curvature tensor field W_{jkh}^{i} is given by [15]

(2.9)
$$W_{jkh}^{i} + W_{khj}^{i} + W_{hjk}^{i} = 0$$

Taking skew – symmetric part of (2.6a) with respect to j, k and h, using (2.7l) and (2.9), we get

(2.10)
$$T_{jkh}^{i} + T_{khj}^{i} + T_{hjk}^{i} = 0.$$

A Finsler space is called a pseudo T-recurrent Finsler space, if it's the curvature tenser T_{ikh}^{i} satisfies ([5], [6])

$$(2.11) \qquad \beta_l T^i_{jkh} = \lambda_l T^i_{jkh} \ , \ \ T^i_{jkh} \neq 0 \ ,$$

where λ_l is non-zero covariant vector field. Since Finsler space is projective flat, we have [15]

(2.12) a)
$$W_{jkh}^{i} = 0$$
, b) $W_{kh}^{i} = 0$,
and c) $W_{j}^{i} = 0$.

A Finsler space is called a pseudo Tbirecurrent Finsler space, if it's the curvature tenser T_{jkh}^{i} satisfies [13]:

(2.13) $\beta_m \beta_l T_{jkh}^i = a_{lm} T_{jkh}^i$, $T_{jkh}^i \neq 0$, where a_{lm} recurrence covariant tensor field of second order

(2.14)
$$\beta_m \beta_l T^i_{kh} = a_{lm} T^i_{kh}$$

(2.15) $\beta_m \beta_l T^i_h = a_{lm} T^i_h$

The curvature tensor T_{jkh}^{i} of a pseudo Tbirecurrent Finsler space on indicatrix is birecurrent in sense of Berwald [13]

(2.16)
$$\beta_m \beta_l(p T^i_{jkh}) = a_{lm}(p \cdot T^i_{jkh}).$$

(2.17) $\beta_m \beta_l(p, T_{jk}^i) = a_{lm} \left(p, T_{jk}^i \right).$

(2.18)
$$\beta_m \beta_l(p, T_j^i) = a_{lm} \left(p, T_j^i \right).$$

(2.19)
$$\beta_m \beta_l(p \cdot H_{jk}) = a_{lm} (p \cdot H_{jk}).$$

(2.20)
$$\beta_m \beta_l(p \cdot H_j) = a_{lm}(p \cdot H_j).$$

(2.21)
$$\beta_m \beta_l \left(T^i_{jkh} - T^a_{jkh} \ell^i \ell_a \right) \\ = a_{lm} \left(T^i_{jkh} - T^a_{jkh} \ell^i \ell_a \right).$$

(2.22)
$$\beta_m \beta_l \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right)$$
$$= a_{lm} \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right).$$

(2.23)
$$\beta_m \beta_l (T_j^i - T_j^a \ell^i \ell_a)$$
$$= a_{lm} (T_j^i - T_j^a \ell^i \ell_a)$$

3. Pseudo T-Trirecurrent Space:

In this section, we introduce a Finsler space which the curvature tensor T_{jkh}^{i} is trirecurrent in sense of Berwald.

Definition 3.1. A Finsler space F_n for which the curvature tensor T^i_{ikh} satisfies

(3.1) $\beta_n \beta_m \beta_l T^{i}_{jkh} = c_{lmn} T^{i}_{jkh}$, $T^{i}_{jkh} \neq 0$, where c_{lmn} recurrence covariant tensor field of third order, this space will be called pseudo T- trirecurrent space.

Differentiating (2.13) covariantly with respect to x^n in sense of Berwald, we get

(3.2)
$$\beta_n \beta_m \beta_l T^{i}_{jkh} = (\beta_n a_{lm}) T^{i}_{jkh} + a_{lm} \beta_n T^{i}_{jkh}.$$

In view of (2.11), the above equation becomes

$$\beta_n \beta_m \beta_l T^{i}_{jkh} = (\beta_n a_{lm}) T^{i}_{jkh} + a_{lm} \lambda_n T^{i}_{jkh}$$

which can be written as

$$\beta_n \beta_m \beta_l T^{i}_{jkh} = c_{lmn} T^{i}_{jkh}$$
, $T^{i}_{jkh} \neq 0$,
where $c_{lmn} = (\beta_n a_{lm}) + a_{lm} \lambda_n$.
Thus, we conclude

Volume 17, Issue (2), 2023

Theorem 3.1. Every pseudo T – birecurrent space which the recurrence vector field satisfies $(\beta_n a_{lm}) + a_{lm}\lambda_n \neq 0$, is a pseudo T – trirecurrent space.

Transvecting (3.1) by y^{j} , using (2.5a) and (1.1a), we get

(3.3) $\beta_n \beta_m \beta_l T^i_{kh} = c_{lmn} T^i_{kh}.$

Transvecting (3.3) by y^k , using (2.5b) and (1.1a), we get

(3.4) $\beta_n \beta_m \beta_l T_h^i = c_{lmn} T_h^i.$

Thus, we conclude

Theorem 3.2. In pseudo T – trirecurrent space, The torsion tensor T_{kh}^{i} and division tensor T_{h}^{i} are trirecurrent.

Differentiating (1.3) covariantly with respect to x^n in sense of Berwald, we get

$$\beta_n \beta_m \beta_l H_{jkh}^i = (\beta_n a_{lm}) H_{jkh}^i + a_{lm} \beta_n H_{jkh}^i.$$

Above equation can be written as

(3.5) $\beta_n \beta_m \beta_l H_{jkh}^i = c_{lmn} H_{jkh}^i$, $H_{jkh}^i \neq 0$, Transvecting (3.5) by y^j , using (1.1a) and (2.7a), we get

(3.6) $\beta_n \beta_m \beta_l H_{kh}^i = c_{lmn} H_{kh}^i$.

Transvecting (3.6) by y^k , using (1.1a) and (2.7b), we get

 $(3.7) \quad \beta_n \beta_m \beta_l H_h^i = c_{lmn} H_h^i.$

Contracting i and h in (3.5) and using (2.7c), we get

$$(3.8) \quad \beta_n \beta_m \beta_l H_{jk} = c_{lmn} H_{jk}$$

Transvecting (3.8) by y^{j} , using (1.1a) and (2.7d), we get

 $(3.9) \quad \beta_n \beta_m \beta_l H_k = c_{lmn} H_k$

Contracting i and h in (3.7) and using (2.7g), we get

$$(3.10) \quad \beta_n \beta_m \beta_l H = c_{lmn} H$$

Thus, we conclude

Theorem 3.3. In flat pseudo T-trirecurrent space, the curvature tensor H_{jkh}^{i} , torsion tensor H_{kh}^{i} , division tensor H_{h}^{i} , Ricci tensor H_{jk} , curvature vector H_{k} and curvature scalar H are trirecurrent.

Differentiating (2.6a) covariantly with respect to x^{l} in sense of Berwald, we get

$$(3.11) \quad \beta_l T^i_{jkh} = \beta_l (W^i_{jkh} - H^i_{jkh})$$

Differentiating (3.11) covariantly twice with respect to x^m and x^n , respectively, in sense of Berwald, we get

(3.12) $\beta_n \beta_m \beta_l T^i_{jkh} = \beta_n \beta_m \beta_l (W^i_{jkh} - H^i_{jkh}),$ Using (3.1), (3.5) and(2.6a) in (3.12), we get (3.13) $\beta_n \beta_m \beta_l W^i_{jkh} = c_{lmn} W^i_{jkh}$

Transvecting (3.13) by y^{j} , using (2.8a) and (1.1a), we get

$$(3.14) \quad \beta_n \beta_m \beta_l \ W_{kh}^i = \ c_{lmn} \ W_{kh}^i$$

Transvecting (3.14) by y^k , using (2.8b) and (1.1a), we get

$$(3.15) \quad \beta_n \beta_m \beta_l W_h^i = c_{lmn} W_h^i$$

Thus, we conclude

Theorem3.4. In pseudo T-trirecurrent space, the projective curvature tensor W_{jkh}^{i} , the torsion tensor W_{kh}^{i} and the division tensor W_{h}^{i} are trirecurrent.

Using (3.1) and (2.6a) in (3.12), we get

(3.16)
$$\beta_n \beta_m \beta_l (W_{jkh}^i - H_{jkh}^i)$$
$$= c_{lmn} (W_{jkh}^i - H_{jkh}^i) .$$

Transvecting (3.16) by y^{j} , using (2.7a), (2.8a) and (1.1a), we get

(3.17)
$$\beta_n \beta_m \beta_l (W_{kh}^i - H_{kh}^i)$$
$$= c_{lmn} (W_{kh}^i - H_{kh}^i)$$

On Pseudo T-Trirecurrent Finsler Space in Berwald Sense

Transvecting (3.17) by y^k , using (2.7b), (2.8b) and (1.1a), we get (3.18) $\beta_n \beta_m \beta_l (W_h^i - H_h^i) = c_{lmn} (W_h^i - H_h^i)$,

Thus, we conclude

Theorem3.5. In pseudo T-trirecurrent space, The tensors $(W_{jkh}^{i} - H_{jkh}^{i})$, $(W_{kh}^{i} - H_{kh}^{i})$ and $(W_{h}^{i} - H_{h}^{i})$ are trirecurrent.

4. Projection on Indicatrix with Respect to Berwald's Connection

Saleem and Abdallah introduced the projection on indicatrix for the tensors which be birecurrent [13]. In this section, we studied the projection on indicatrix for the tensors which be trirecurrent.

Let us consider a Finsler space F_n for which the curvature tensor T_{jkh}^i is trirecurrent in sense of Berwald, i.e. characterized by (3.1).

Now, in view of (1.2), the curvature tensor T_{jkh}^{i} on indicatrix is given by

(4.1)
$$p.T_{jkh}^i = T_{bcd}^a h_a^i h_j^b h_k^c h_h^d .$$

Taking covariant derivative of (4.1) with respect to x^{l} , x^{m} and x^{n} in sense of Berwald and using the fact that $\beta_{l}h_{j}^{i} = 0$, we get

(4.2)
$$\beta_n \beta_m \beta_l (p T^i_{jkh})$$

= $\beta_n \beta_m \beta_l T^a_{bcd} h^i_a h^b_j h^c_k h^d_h$

Using (3.1) in (4.2), we get

(4.3) $\beta_n \beta_m \beta_l (p T^i_{jkh}) = c_{lmn} T^a_{bcd} h^i_a h^b_j h^c_k h^d_h$. In view of (1.2) and by using the fact that $\beta_l h^i_j = 0$, equation (4.3) can be written as $\beta_n \beta_m \beta_l (p T^i_{jkh}) = c_{lmn} (p \cdot T^i_{jkh})$. This shows that $p \cdot T_{jkh}^{i}$ is trirecurrent.

Thus, we conclude

Theorem 4.1. The projection of the curvature tensor T_{jkh}^{i} on indicatrix in pseudo T-trirecurrent space is trirecurrent in sense of Berwald.

Taking covariant derivative of (2.17) with respect to x^n in sense of Berwald, we get

(4.4)
$$\beta_n \beta_m \beta_l(p T_{kh}^i) = \beta_n a_{lm}(p \cdot T_{kh}^i).$$

Using (3.3) and using the fact that $\beta_l h_j^i = 0$ in (4.4) and in view of (1.2), we get

(4.5) $\beta_n \beta_m \beta_l(p T_{kh}^i) = c_{lmn}(p \cdot T_{kh}^i).$

Theorem 4.2. The projection of the torsion tensor T_{kh}^i on indicatrix in pseudo T – trirecurrent space is trirecurrent in sense of Berwald.

Taking covariant derivative of (2.18) with respect to x^n in sense of Berwald, we get

(4.6)
$$\beta_n \beta_m \beta_l (p T_h^i) = \beta_n a_{lm} (p \cdot T_h^i).$$

Using (3.4) and the fact that $\beta_l h_j^i = 0$ in

(4.6) and in view of (1.2), we get

(4.7) $\beta_n \beta_m \beta_l(p T_h^i) = c_{lmn}(p \cdot T_h^i).$

Theorem 4.3. The projection of the division tensor T_h^i on indicatrix in pseudo T – trirecurrent space is trirecurrent in sense of Berwald.

Taking covariant derivative of (2.21) with respect to x^n in sense of Berwald and using (2.11), we get

$$\beta_n \beta_m \beta_l \left(T^i_{jkh} - T^a_{jkh} \ell^i \ell_a \right)$$
$$= (\beta_n a_{lm} + \lambda_n a_{lm}) (T^i_{jkh} - T^a_{jkh} \ell^i \ell_a)$$

Above equation we can written as

$$(4.8) \ \beta_n \beta_m \beta_l \left(T^i_{jkh} - T^a_{jkh} \ell^i \ell_a \right)$$

$$= c_{lmn} (T^i_{jkh} - T^a_{jkh} \ell^i \ell_a).$$

Thus, we conclude

corollary 4.1. In pseudo T-trirecurrent space, the projection of the tensor T_{jkh}^{i} on indicatrix is trirecurrent if and only if $T_{jkh}^{a}\ell^{i}\ell_{a}$ is trirecurrent.

Taking covariant derivative of (2.22) with respect to x^n in sense of Berwald, we get

$$\beta_n \beta_m \beta_l (T^i_{jk} - T^a_{jk} \ell^i \ell_a)$$

= $(\beta_n a_{lm} + \lambda_n a_{lm}) (T^i_{jk} - T^a_{jk} \ell^i \ell_a).$

Above equation can be written as

(4.9)
$$\beta_n \beta_m \beta_l \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right)$$
$$= c_{lmn} \left(T^i_{jk} - T^a_{jk} \ell^i \ell_a \right).$$

Thus ,we conclude

corollary 4.2. In pseudo T-trirecurrent space, the projection of the torsion tensor T_{jk}^i on indicatrix is trirecurrent if and only if $T_{jk}^a \ell^i \ell_a$ is trirecurrent.

Taking covariant derivative of (2.23) with respect to x^n in sense of Berwald, we get

$$\beta_n \beta_m \beta_l (T_j^i - T_j^a \ell^i \ell_a)$$

= $(\beta_n a_{lm} + \lambda_n a_{lm}) (T_j^i - T_j^a \ell^i \ell_a).$

Above equation can be written as

(4.10)
$$\beta_n \beta_m \beta_l \left(T_j^i - T_j^a \ell^i \ell_a \right)$$
$$= c_{lmn} \left(T_j^i - T_j^a \ell^i \ell_a \right).$$

Thus ,we conclude

corollary 4.3. in pseudo T – trirecurrent space, the projection of the division tensor T_j^i on indicatrix is trirecurrent if and only if $T_j^a \ell^i \ell_a$ is trirecurrent.

REFERENCES

[1] Abdallah AA, Navlekar AA, Ghadle KP and Hardan B., (2022): Fundamentals and recent studies of Finsler geometry, international Journal of advances in applied mathematics and mechanics, Vol.10 (27-38).

[2] Dubey, R. S. D. and Hukum Singh.,(1979).: Proc. Indian Acad. Sci., 88A, 363.

[3] **Gheorghe, M.**, (2007),: The Indicatrix in Finsler Geometry, Analele Stiintifice Ale Uuiversitătii Matematică. Tomul LIII,163-180.

[4] [4] Hadi, W. H. A., (2016): Study of Certain Types of Generalized Birecurrent in Finsler spaces, Ph. D. Thesis, University of Aden.

> [5] **Pandey, P.N.** and **Dwivedi, V.J.**, (1987): Affine motion in a T-recurrent Finsler manifold, IV, Proc. Nat. Acad. Sci., (India), 57 (A) ,438-446.

> [6] Pandey, P.N. and Dwivedi, V.J., (1987):On T-recurrent Finsler Spaces, Prog. of Maths.. Vol. 21, (2), 101-111.

[7] **Pandey, P.N** and **Verma, R.,** (1997): C^{h} -birecurrent Finsler space, second conference of the International Academy of Physical Sciences, (December 13-14).

[8] Qasem, F.Y.A., (2000).: On Transformation in Finsler Spaces, D.Phil. Thesis, University of Allahabad, Allahabad.

[9] Qasem, F.Y.A. and Saleem, A.A.M.,
(2010): On U-Birecurrent Finsler Spaces,
Univ. Aden J. Nat. and Appl. Sc. Vol. 14, 587-596.

[10] Qasem, F.Y.A. and Saleem, A.A.M.,(2016): On Certain Types of Affine Motion,

International Journal of Sciences Basic and Applied Research. Vol. 27, No.1., 95-114.

[11] **Saleem, A.A.M.**, (2011): On Certain Generalized Birecurrent and trirecurrent Finsler Spaces, M, Sc. Thesis, University of Aden, Aden .

[12] Saleem, A. A. M., (2016): On certainProblems in Finsler space, D. Ph. Thesis,Univ. of Aden .

[13] Saleem, A. A. and Abdallah, A. A.,
(2023): On Pseudo T-Birecurrent Finsler
Space in Berwald sense, International
Journal of Advanced multidisciplinary
Research and studies, Vol.3, Iss.3, 517-522.

[14] Saleem, A. A. M. and Abdallah, A. A., (2022).: Study On U^h –Birecurrent Finsler space, International Journal of Advanced Research in Science, Communication and Technology, Vol. 2, Iss. 3, 28 – 39.

[15] Singh, S. P., (2010): Projective motionin bi - recurrent Finsler space, DifferentialGeometry- Dynamical Systems, Vol. 12,221-227.

[16] **Sinha, B.B.,** (1971): Progress of mathematics, Vol.5(88).

فضاء فنسلر الزائف -T ثلاثي المعاودة وفق أسلوب بيرولد

عبدالستار علي محسن سليم قسم الرياضيات - كلية العلوم - جامعة - عدن **وفاء هادي علي هادي** قسم الرياضيات - كلية المجتمع - عدن

الملخص: في هذه الورقة البحثية قدمنا فضاء فنسلر الزائف- T ثلاثي المعاودة وفق أسلوب بيرولد وتوصلنا للعديد من النظريات في هذا الفضاء ثم قدمنا اسقاطات عدد من الموترات واثبتنا أنها تحقق الخاصية الثلاثية المعاودة في الفضاء الزائف – T ثلاثي المعاودة.

الكلمات المفتاحية: الفضاء الزائف-T ثلاثي المعاودة، المستوى الزائف-T ثلاثي المعاودة، الاسقاطات