

# Other Notions of $\Lambda$ – Sets and V – Sets In Topological Spaces

#### **Radhwan Mohammed Aqeel**

Dept. of Mathematics, Faculty of Science Aden University, Yemen e-mail raqeel1976 @yahoo.com

#### Samah Mohammed Al-qadhi

Dept. of Mathematics, Faculty of Education Aden University, Yemen e-mail salqady047@gmial.com

**Abstract:** In this paper we have introduced and investigated a new notion in topological spaces called  $\alpha$ - $\Lambda$ -sets and  $\alpha$ -  $\vee$ -sets, which are defined by the notion of  $\Lambda$ - sets and  $\vee$ - sets. We investigated the properties of the  $\alpha$ - $\Lambda$ -sets and  $\alpha$ -  $\vee$ -sets. Also the achievement of the topology defined by these families of sets is obtained.

**Keywords:** Topological spaces,  $\alpha$ -A-sets,  $\alpha$ -V-sets.

#### **1. Introduction**

In 1986, Maki [6] continued the work of Levine [5]and Dunhem[2] on generalized closed sets and closure operators by introducing the notion of a-generalized  $\Lambda$ -set in a topological space (X, $\tau$ ) and by defining an associated closure operator, i.e.

the  $\Lambda$ -closure operator. In this direction we shall introduce the notion of  $\alpha$ - $\Lambda$ -set and  $\alpha$ - $\vee$ -set in a given topological space and thus obtain new topologies defined by these families of sets. We also consider some of the fundamental properties of these new topologies.

# 1- Preliminaries.

**Definition 2.1** A subset A of topological space  $(X, \tau)$  is called:

(1) [9] Regular open, if A = int(cl(A)).

- (2) [5] Semi-open, if  $A \subset cl(int(A))$ .
- (3) [7] Pre-open, if  $A \subset int(cl(A))$ .
- (4) [8]  $\alpha$ -open, if  $A \subset int(cl(int(A)))$ .

The complement of a regular open (resp, semi-open, pre-open and  $\alpha$ -open) set is called a regular closed (resp, semi-closed, pre- closed and  $\alpha$ -closed).

**Definition 2.2** [6] Let A be a set of a topological space (  $X, \tau$  ), Then

 $A^{\wedge} = \bigcap \{ U : A \subseteq U \text{ and } U \text{ is open } \} \text{ and }$ 

 $A^{\vee} = \bigcup \{F \mid F \subseteq A \text{ and } F \text{ is closed} \}.$ 

Moreover, A is said to be  $\wedge$ -set (or meet set) if  $A = A^{\wedge}$  and A is said to be  $\vee$ -set (or join set) if  $A = A^{\vee}$ .

**Lemma 2.3** [6] Let  $(X,\tau)$  be a topological space, A and B be subsets of X. Then the following hold

- A<sup>∨</sup> ⊆A ⊆ A<sup>∧</sup>.
   A ⊆ B implise A<sup>∨</sup> ⊆ B<sup>∨</sup> and A<sup>∧</sup> ⊆ B<sup>∧</sup>.
   If A ∈ τ , then A = A<sup>∧</sup>.
- (4)  $A^{\wedge\wedge} = A^{\wedge}$ .
- (5)  $A^{\vee\vee} = A^{\vee}$ .
- (6)  $(\bigcup_{i \in I} A_i)^{\wedge} = \bigcup_{i \in I} A_i^{\wedge}.$
- (7)  $(A^c)^{\wedge} = (A^{\vee})^c$ .
- (8)  $(\bigcap_{i\in I} A_i)^{\wedge} \subset \bigcap_{i\in I} A_i^{\wedge}$ .
- (9) If  $A^{c} \in \tau$ , then  $A = A^{\vee}$ .
- $(10) \left(\bigcap_{i \in I} A_i\right)^{\vee} = \bigcap_{i \in I} A_i^{\vee}.$
- (11)  $(\bigcup_{i \in I} A_i)^{\vee} \supset \bigcup_{i \in I} A_i^{\vee}$ .
- (12) If  $A_i$  is a  $\wedge$ -set  $(i \in I)$ ,
- then  $\bigcup_{i \in I} A_i$  is a  $\wedge$ -set.
- (13) If  $A_i$  is a V-set  $(i \in I)$ , then  $\bigcap_{i \in I} A_i$ is a V-set.
- (14) A is a  $\wedge$ -set if and only if  $A^c$  is a V-set.

**Definition 2.4** Let A be a subset of a topological space  $(X, \tau)$ . Then is called:

- (1)  $\Lambda_s set(resp, V_s A)$  [1] if it is the intersection (resp, union) of semi-open (resp, semi-closed) sets.
- (2)  $\Lambda_p set(resp, V_p sei)$  [4] if it is the intersection(resp, union) of pre-open (resp, pre-closed) sets.
- (3)  $\Lambda_{\alpha} set(\text{resp}, V_{\alpha} \text{sei})$  [3] if it is the intersection (resp, union) of  $\alpha$ -open (resp,  $\alpha$ -closed) sets.
- (4) A is called  $\Lambda_s set$  (resp,  $V_s set$ ) [1] if  $A = \Lambda_s - set$  (resp,  $A = V_s - set$ ).
- (5) A is called  $\Lambda_p set$  (resp,  $V_p set$ ) [4] if A= $\Lambda_p - set$  (resp, A =  $V_p - set$ ).
- (6) A is called  $\Lambda_{\alpha} set$  (resp,  $V_{\alpha} set$ ) [3] if A= $\Lambda_{\alpha} - set$  (resp, A = $V_{\alpha} - set$ ).

**Definition 2.5.** [10] A subset A of a topological space  $(X, \tau)$  is called:

- (1)  $Pre \wedge -set$  (resp.  $pre \vee -set$ ), if  $A \supset A^{\vee \wedge}$  (resp,  $A \subset A^{\wedge \vee}$ ).
- (2) Semi  $-\wedge$  -set (resp. semi  $-\vee$  -set), if  $A \supset A^{\wedge \vee}$  (resp.  $A \subset A^{\vee \wedge}$ ).
- (3)  $\alpha$   $\Lambda$  -sets.

**Definition 3.1.** A subset A of a topological space  $(X,\tau)$  is called  $\alpha$ -A-set, if  $A \supset A^{\wedge \vee \wedge}$ .

We denote that all  $\alpha - \wedge$  -sets by  $\alpha - \wedge (x)$ .

**Proposition 3.2.** Let  $(X, \tau)$  be topological space, then for any subset A of X, the followings hold:

- i. Every  $\wedge$  -set is an  $\alpha$   $\wedge$  -set.
- ii. Every  $\alpha$   $\wedge$  -set is a semi- $\wedge$  set. .
- iii. Every  $\alpha$   $\wedge$  -set is a pre- $\wedge$ -set.

## Proof.

i. Let A is a  $\wedge$  -set, then  $A = A^{\wedge}$ .

So  $A \supset A^{\wedge \vee} \Rightarrow (A)^{\wedge} \supset (A^{\wedge \vee})^{\wedge} \Rightarrow A \supset A^{\wedge \vee \wedge}.$ 

Thus A is an  $\alpha$ -  $\wedge$  -set.

ii. Let A is an  $\alpha$ -  $\wedge$  -set, then

 $A \supset A^{\wedge \vee \wedge} \supset A^{\wedge \vee}$ . Hence A is a semi- $\wedge$ -set.

iii. Let A is an  $\alpha$ - A -set, then

 $A \supset A^{\wedge \vee \wedge} \supset A^{\vee \wedge}$ . Hence A is a pre- $\wedge$ -set.

The following diagram holds for any subset

A of topological space (X,  $\tau$ ).



#### Diagram 1

**Remark 3.3.** The converse of this proposition 3.2. is not true as shown of the

next examples.

**Example 3.4**. Let X= { a, b, c, d} and

 $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ 

Then  $\alpha$ -  $\wedge$  -sets = { $\emptyset$ , {a}, {b}, {c}, {a, b},

 $\{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X \}.$ 

If we take  $A = \{c\}$ , then we get A is not  $\wedge$  -set but it is an  $\alpha - \wedge$  -set.

**Example 3.5**. Let X={a, b, c, d } and

 $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c, d\}, X\}.$  Then  $\alpha - \Lambda - \text{sets} = \{\emptyset, \{a\}, \{a, b\}, \{a, c, d\}, X\},$ 

 $S- \wedge -set = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a, c, d\}, \$ 

X} and  $P-\Lambda$ -sets ={ $\emptyset$ , {a}, {c}, {a, b}, {a, c},

 $\{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}.$ 

If we take A={ b } is a S-  $\wedge$ -set but is not an  $\alpha$ - $\wedge$ -set. And if we take B= {c}, then we get B is not  $\alpha$ - $\wedge$ -set but it is a p- $\wedge$ -set.

**Theorem 3.6.** Let  $(X, \tau)$  be a topological space and  $A_i \in \alpha - \wedge (x)$ , then

 $\cap \{ A_i : i \in I \} \in \alpha - \wedge (x), \text{ for each } i \in I .$ 

**Proof.** Let  $A_i$  is an  $\alpha$ -  $\wedge$ -set, then

 $A_{i} \supset A_{i}^{\wedge \vee \wedge} \quad \forall i \in I, \text{ thus}$  $\bigcap_{i \in I} A_{i} \supset \bigcap_{i \in I} A_{i}^{\wedge \vee \wedge} \supset (\bigcap_{i \in I} A_{i}^{\wedge \vee})^{\wedge}$  $= (\bigcap_{i \in I} A_{i}^{\wedge})^{\vee \wedge} \supset (\bigcap_{i \in I} A_{i})^{\wedge \vee \wedge}.$ 

This shows that  $\bigcap_{i \in I} A_i \in \alpha - \wedge (X)$ .

**Lemma 3.7**. Let A be a subset of a space  $(X,\tau)$ . Then A is an  $\alpha$ - $\Lambda$ -set in  $(X,\tau)$  if and only if A is *S*- $\Lambda$ -set and *P*- $\Lambda$ -set in  $(X, \tau)$ . **Proof**.

Let  $A \in \alpha - \wedge (X)$ . By the definition of  $\alpha - \wedge$ -set, we have  $A \supset A^{\wedge \vee}$  and  $A \supset A^{\vee \wedge}$ . Therefore, we obtain  $A \in S - \wedge (X) \cap P - \wedge (X)$ . Sufficiency, let  $A \in S - \wedge (X) \cap P - \wedge (X)$ . Since  $A \in P \land (X)$ ,  $A \supset A^{\vee \wedge}$  and hence it follows from  $A \in S \land (X)$  that  $A \supset A^{\wedge \vee} \supset A^{\wedge \vee \wedge} \supset A^{\wedge \vee \wedge}$ .

Therefore, we have  $A \in \alpha - \wedge (X)$ .

**Remark 3.8.** The  $\lambda$ -open set and  $\alpha$ -  $\wedge$ -set are independent notions we can show that from the next example .

**Example 3.9.** Let  $X=\{a, b, c, d\}$  and  $\tau=\{\emptyset, \{a, b\}, X\}.$ 

If we take  $A = \{c, d\}$  and  $B = \{a\}$ .

Then A is a  $\lambda$ -open but it is not  $\alpha$ -  $\Lambda$ -set and B is not  $\lambda$ -open but it is an  $\alpha$ - $\Lambda$ -set.

**Remark 3.10** .The  $\alpha$ - open set and  $\alpha$ -  $\wedge$ -set are independent notions we can show that from the next example:

**Example 3.11.** Let X = { a ,b, c , d} and  $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}.$ 

If  $A=\{c\}$  and  $B=\{a, b, d\}$ . Then A is an

 $\alpha$ - $\Lambda$ -set but it is not  $\alpha$ - open and B is not  $\alpha$ - $\Lambda$ -set but it is an  $\alpha$ - open set .

**Remark 3.12.** The  $\wedge_{\alpha}$ -set and  $\alpha$ - $\wedge$ -set are independent notions we can show that from the next example.

**Example 3.13.** Consider the topological space (X,  $\tau$ ) given in Example 3.4.

Hence, if A={c} and B ={a, b, d}. Then A is an  $\alpha$ -A-set but it is not  $\Lambda_{\alpha}$ -set and B is not  $\alpha$ -A -set but it is  $\Lambda_{\alpha}$  - set.

**Lemma 3.14.** Every open set is an  $\alpha$ - $\wedge$ -set.

**Proof**. The Proof comes from the fact that, every open set is a  $\wedge$  -set .

# 4- $\alpha$ -V-sets

Definition 4.1. A subset A of topological

spaces (X,  $\tau$ ) is called  $\alpha$ -V-set, if A $\subset A^{V \wedge V}$ .

We denote that all  $\alpha$ -V-sets by  $\alpha$ -V(X).

**Proposition 4.2.** Let  $(X,\tau)$  be a topological space, the followings hold, for any subset A of X:

- i. Every V-set is an  $\alpha$ -V-set.
- ii. Every  $\alpha$ -V-set is a semi-V-set.
- iii. Every  $\alpha$ -V-set is a pre -V-set.

#### Proof .

- i. Let A is a V-set, then  $A = A^{\vee} \Rightarrow$   $A \subset A^{\vee \wedge} \Rightarrow (A)^{\vee} \subset (A^{\vee \wedge})^{\vee} \Rightarrow A^{\vee} \subset A^{\vee \wedge \vee} \Rightarrow$  $A \subset A^{\vee \wedge \vee}$ . Thus A is an  $\alpha$ - V-set.
- ii. Let A is an  $\alpha$ -V-set, then A  $\subset A^{\vee \wedge \vee}$ . Since A  $\subset A^{\vee \wedge \vee} \subset A^{\vee \wedge} \Rightarrow$  A  $\subset A^{\vee \wedge}$ . Thus A is a *s*-V-set.
- iii. Let A is an  $\alpha$  V-set, then A  $\subset A^{\vee \wedge \vee} \Rightarrow$   $A^{\vee} \subset A \Rightarrow (A^{\vee})^{\wedge} \subset (A)^{\wedge} \Rightarrow A^{\vee \wedge} \subset A^{\wedge}$   $\Rightarrow (A^{\vee \wedge})^{\vee} \subset (A^{\wedge})^{\vee} \Rightarrow A^{\vee \wedge \vee} \subset A^{\wedge \vee}$ . Since  $A \subset A^{\vee \wedge \vee} \Rightarrow A \subset A^{\wedge \vee}$ . Thus A is a p-V-set.

The following diagram holds for any a subset A of topological space (  $X, \tau$ )



#### **Diagram 2**

**Remark 4.3.** The converse of these implications in Diagram 2 are not true in general as shown in the following examples: **Example 4.4.** Let  $X = \{a, b, c, d\}$ ,

 $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}.$ If we take A = {a, b, d}, then we get A is only if A is S-V-set and p-V-set in (X,  $\tau$ ).

**Proof** . Let  $A \in \alpha$ - V(x) . By the definition of

not an V-set but it is an  $\alpha$ -V-sets.

**Example 4.5**. Let  $X = \{a, b, c, d\}$ ,

 $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c, d\}, X\}$ . If we take A= {a, b}, then we get A is not  $\alpha$ - V-set but it is a semi- V-set. And if we take B={c}, then we get B is not an  $\alpha$ - V-set but it is a pre- V-set.

**Theorem 4.6.** Let  $(X, \tau)$  be a topological space and  $A \subset X$ , then the following statements are equivalent.

- i. A is an  $\alpha$ -V-set.
- ii.  $A^c$  is an  $\alpha$   $\wedge$ -set.

#### Proof.

(i)  $\longrightarrow$  (ii) Let A be an  $\alpha$ -V-set, then

 $A \subset A^{\vee \wedge \vee}$ , implies that

$$(A)^c \supset (A^{\vee \wedge \vee})^c = (A^c)^{\wedge \vee \wedge}$$

Hence  $A^c$  is an  $\alpha$ -  $\wedge$ -set.

(ii)  $\longrightarrow$  (i) Let  $A^c$  be an  $\alpha$ -  $\wedge$ -set, than  $A^c \supset (A^c)^{\wedge \vee \wedge}$ , such that  $(A^c)^c \subset ((A^c)^{\wedge \vee \wedge})^c$ , implies that  $A \subset ((A^{\vee \wedge \vee})^c)^c = A^{\vee \wedge \vee}$ .

Hence A is an  $\alpha$ -V-set.

**Theorem 4.7**. Let  $(X, \tau)$  be a topological space and  $A_i$  be a subset of X. Then for each  $i \in I$ ,  $\cup \{A_i \ i \in I\} \in \alpha$ -  $\vee(X)$ .

**Proof.** Let  $A_i$  be an  $\alpha$ -  $\vee$ -set, then  $A_i \subset A_i^{\vee \wedge \vee}$ , thus  $\bigcup_{i \in I} A_i \subset \bigcup_{i \in I} A_i^{\vee \wedge \vee} \subset (\bigcup_{i \in I} A_i^{\vee \wedge})^{\vee}$  $= (\bigcup_{i \in I} A_i^{\vee})^{\wedge \vee}$ 

$$\subset (\cup_{i\in I} A_i)^{\vee \wedge \vee}.$$

This shows that  $\bigcup_{i \in I} A_i \in \alpha$ - V(X).

**Lemma 4.8**. Let A be a subset of a space  $(X, \tau)$ . Then A is  $\alpha$ -V-set in  $(X, \tau)$  if and  $\alpha$ -V-set. We have  $A \subset A^{\vee \wedge}$  and  $A \subset A^{\wedge \vee}$ . Therefore, we obtain  $A \in s$ - $\vee(x) \cap p$ - $\vee(x)$ .

Sufficiency. Let  $A \in s - \vee (x) \cap p - \vee (x)$ .

Since  $A \in p$ - V(x),  $A \subset A^{\wedge V}$  and hence it follows from  $A \in s$ - V(x) that

 $A \subset A^{\vee \wedge} \subset A^{\vee \wedge \vee} \subset A^{\vee \wedge \vee} \text{ . Therefore we have}$  $A \in \alpha \cdot \vee(X) \text{ .}$ 

**Remark 4.9.** The  $\lambda$ -closed set and  $\alpha$ - V-set are independent notions , we show that from the next example .

**Example 4.10.** Let X= { a, b, c, d},

 $\tau = \{\emptyset, \{a,b\}, X\}$ . If we take A= $\{a, b\}$  and B= $\{a, b, c\}$ . Then A is an  $\lambda$ -closed set but is not  $\alpha$ - V-set and B is an  $\alpha$ - V-set but is not  $\lambda$ -closed.

**Remark 4.11**. The  $\alpha$ - closed and  $\alpha$ - V-set are impendent notions, we show that from the next example .

**Example 4.12** . Consider the topological space  $(X, \tau)$  given in Example 4.5. Hence, if we take A= {c} and B = {a, d} . Than A is an  $\alpha$ - closed set but is not  $\alpha$ - V-set and B is an  $\alpha$ - V-set but is not  $\alpha$ - closed set.

**Remark 4.13.** The  $V_{\alpha}$  - set and  $\alpha$ - V-set are independent notions, we show that from the next example .

**Example 4.14.** From Example4.10. Hence A is an  $V_{\alpha}$  - set but is not  $\alpha$ - V-set and B is an  $\alpha$ - V-set but is not  $V_{\alpha}$  - set.

**Lemma 4.15**. Every closed set is a  $\alpha$ -V-set.

**Proof**. The proof comes from the fact that, every closed set is an V-set.

# **5.** Some Operator via ∧ -sets

## and V-sets

Definition 5.1 A subset A of a topological

space  $(X, \mathcal{T})$  is called  $\wedge^{\alpha}$ -set if intersection of all  $\alpha$ -  $\wedge$ -sets containing A.  $\wedge^{\alpha}(A) = \cap \{ G: G \supseteq A, G \in \alpha - \wedge(X) \}.$ 

**Example 5.2.** Let X={a, b, c, d},

 $\tau = \{ \emptyset, \{b\}, \{c\}, \{b, c\}, X \}.$ 

Then  $\alpha - \Lambda(X) = \{ \emptyset, \{b\}, \{c\}, \{b, c\}, X \}.$   $\wedge^{\alpha} (\{a\}) = X, \wedge^{\alpha} (\{c\}) = \{c\},$   $\wedge^{\alpha} (\{a, d\}) = X, \wedge^{\alpha} (\{a, c, d\}) = X$  and  $\wedge^{\alpha} (X) = X.$ 

Theorem 5.3. For subsets A, B and

 $A_i (i \in I)$  of a topological space (X,  $\tau$ ), the following hold

i.  $A \subseteq \wedge^{\alpha}(A)$ 

ii. If  $A \subseteq B$ . Then  $\wedge^{\alpha}(A) \subseteq \wedge^{\alpha}(B)$ .

iii.  $\wedge^{\alpha} (\wedge^{\alpha}(A)) = \wedge^{\alpha}(A)$ .

iv. If  $A \in \alpha - \Lambda((x))$ , then  $A = \Lambda^{\alpha}(A)$ .

v.  $\wedge^{\alpha}(\bigcup \{A_i \ li \in I\}) = \bigcup \{\wedge^{\alpha}(A_i) \ Ii \in I\}.$ 

vi.  $\wedge^{\alpha}(\cap \{A_i \ li \in I\}) \subset \cap \{\wedge^{\alpha}\{(A_i) \ li \in I\}\}.$ 

# Proof.

i. It is clear by Definition 5.1.

ii. Suppose that  $x \notin \wedge^{\alpha}(B)$ . Then there exists a subset  $G \in \alpha - \wedge(X)$  such that  $B \subset G$  with  $x \notin G$  such that  $x \notin B$ , since  $A \subset B$  then x $\notin \wedge^{\alpha}(A)$  and thus  $\wedge^{\alpha}(A) \subset \wedge^{\alpha}(B)$ .

iii. It follows from (i) and (ii) that

 $\wedge^{\alpha}(A) \subseteq \wedge^{\alpha}(\wedge^{\alpha}(A)). \text{ If } x \in \wedge^{\alpha}(A), \text{ then there}$ 

exists  $G \in \alpha - \Lambda(X)$  such that  $A \in G$  and  $x \notin G$ 

hence  $\wedge \alpha(A) \subset G$  and so we have

X ∉  $\land ^{\alpha}(\land ^{\alpha}(A))$ . Then

 $(\wedge^{\alpha}(\wedge^{\alpha}(A))) = \wedge^{\alpha}(A).$ 

iv. Let  $A \in \alpha$ -  $\Lambda(X)$ . Since A is the least

 $\alpha$ -  $\wedge$ - set containing itself, then

 $\wedge^{\alpha}$  (A) = A. Form (ii),

 $\wedge {}^{\alpha}(A_i) \subset \wedge {}^{\alpha}(\cup \{A_i \ li \in I\})$  implies that

 $\cup \{ \wedge^{\alpha}(A_i) \ li \in I \} \subset \wedge^{\alpha} (\cup \{ A_i \ li \in \mathbf{I} \}) \ .$ 

Conversely suppose that exists a point x such that  $x \notin \wedge^{\alpha}(\bigcup\{A_i \ li \in I\})$ . Then there exists an  $\alpha$ - $\wedge$ -set G such that

 $\cup \{A_i \ li \in I\} \subset G \text{ and } x \notin G.$  Thus for each

 $i \in I$  we have  $x \notin \wedge^{\alpha}(A_i)$ .

This implies that  $x \notin (\cup \{ \land \alpha(A_i) \ li \in I \} )$ .

v. Suppose that there exists a point x such that  $x \notin \cap \{ \wedge {}^{\alpha}(A_i) li \in I \}$  then, there exists  $i_0 \in I$  such that  $x \notin \wedge {}^{\alpha}(A_{i0})$  and there exists an  $\alpha$ -  $\wedge$ -set G such that  $x \notin G$  and  $A_{i0} \subset G$ . We have  $\cap \{ \wedge {}^{\alpha}(A_{i0}) li \in I \} \subset A_{i0} \subset G$  and

 $x \notin G$ . Therefore,  $x \notin \wedge^{\alpha} (\cap \{A_i) \ li \in I\})$ .

**Remark 5.4** In general we have

 $\wedge^{\alpha}(A_1 \cap A_2) \neq \wedge^{\alpha}(A_1) \cap \wedge^{\alpha}(A_2)$ . This can be shown by the following example:

**Example 5.5.** Let  $X = \{a, b, c, d\}$ ,

 $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X \}.$ Now put  $A_1 = \{a\}$  and  $A_2 = \{b\}$ . Then  $\wedge^{\alpha}(A_1 \wedge A_2) = \emptyset \neq \{b\} = \wedge^{\alpha}(A_1) \cap \wedge^{\alpha}(A_2).$ 

**Theorem 5.6** A subset A of a topological space  $(X, \tau)$  is called an  $\alpha$ -  $\wedge$ -set if and only if  $A = \wedge^{\alpha} (A)$ .

**Proof**. The proof comes from Theorem 3.6. and Theorem 5.3.

Now we introduce the notions of revised weak forms of  $\alpha$ -V-sets.

**Definition 5.7.** A subset of A of a topological space  $(X, \tau)$  is called  $\vee^{\alpha}$ - set if union of all  $\alpha$ -  $\vee$ -sets contained in A.  $\vee^{\alpha}$  (A) =  $\cup \{S \setminus S \subseteq A, S \in \alpha - \lor (X) \}.$ 

**Example 5.8.** Let  $X = \{a, b, c, d\}$ ,

 $\begin{aligned} & \tau = \{ \emptyset, X, \{b\}, \{c\}, \{b, c\} \}. \text{ Hence} \\ & \vee^{\alpha}(\{a\}) = \emptyset, \ \vee^{\alpha}(\{a, d\}) = \emptyset, \\ & \vee^{\alpha}(\{a, c, d\}) = \{a, c, d\} \text{ and } \ \vee^{\alpha}(X) = X. \end{aligned}$ 

Theorem 5.9. For subsets A, B and

 $A_i$  ( $i \in I$ ) of a topological space (X,  $\tau$ ), the following held

- i.  $V^{\alpha}(A) \subseteq A$ .
- ii. If  $A \subseteq B$ , then  $\vee^{\alpha}(A) \subset (B)$ .
- iii.  $V^{\alpha}(V^{\alpha}(A)) = V^{\alpha}(A)$ .
- iv.  $(\nabla^{\alpha}(A^{\alpha}))^{c} = \Lambda^{\alpha}(A^{c})$ .
- v. If  $A \in \alpha$  V(X), then  $A = V^{\alpha}(A)$ .
- vi.  $\vee^{\alpha} (\cap \{A_i \ li \in I\}) = \cap \{\vee^{\alpha} (A_i) \ li \in I\}$
- vii.  $\vee^{\alpha} ( \cup (\{A_i \ li \in I\}) \supset \cup \{\vee^{\alpha}(A_i) \ li \in I\} )$ .

# Proof .

- i. It's clear by Definition 5.7.
- ii. Suppose that x∉V<sup>α</sup>(B). Then there exists a subset S ∈ α- V(X) such as that S ⊂ B with x ∉ B such that x ∉ S since A ⊂ B, then x ∉ V<sup>α</sup>(A) and thus V<sup>α</sup>(A)⊆V<sup>α</sup> (B).

iii. It follows from (i) and (ii) that  $\vee^{\alpha}(A) \subseteq \vee^{\alpha}(\vee^{\alpha}(A))$ . If  $x \notin \vee^{\alpha}(A)$ , then there exists  $S \in \alpha - \vee(X)$  such that  $A \supset S$ . x  $\notin S$  hence  $\vee^{\alpha}(A) \subset S$  and so we have  $x \notin \vee^{\alpha}(\vee^{\alpha}(A))$ . Then  $\vee^{\alpha}(\vee^{\alpha}(A)) = \vee^{\alpha}(A)$ .

iv. 
$$(\vee^{\alpha}(A))^{c} = (\cup \{ S: S \supseteq A, S \in \alpha - \vee(X) \})^{c}$$
  
=  $\cap \{ S^{c}: S^{c} \subseteq A^{c}, S^{c} \in \alpha - \wedge(X) \}$ 

Put  $S^c = G$ , then we have

$$(\mathsf{V}^{\alpha}(\mathbf{A}))^{c} = \cap \{ \mathbf{G} : \mathbf{G} \subseteq A^{c}, \mathbf{G} \in \alpha \text{-} \wedge (\mathbf{X}) \}$$
$$= \wedge^{\alpha}(A^{c}) .$$

To prove (v), let B an  $\alpha$ - V-set in (X,  $\tau$ ), then  $B^c \in \alpha$ - V (X,  $\tau$ ). Thus  $B^c = (V^{\alpha}(B))^c$ . Hence B =  $V^{\alpha}(B)$ . To prove (vi), by theorem 5.9. (v) that

| JEF/Journal of Education Faculties | مجلة كليات التربية – جامعة عدن |
|------------------------------------|--------------------------------|
| Volume 17, Issue (1), 2023         | المجلد 17، العدد (1)، 2023 م   |

 $\wedge^{\alpha}(\cup \{ A_i \ li \in I \}) = (\cup \{ \wedge^{\alpha} (A_i) \ i \in I \}).$ Take complement for both such that  $\wedge^{\alpha}(\cup \{ A_i \ li \in I \})^c = (\cup \{ \wedge^{\alpha} (A_i) \ li \in I \})^c .$ Hence  $\vee^{\alpha}(\cap \{ A_i^{\ c} li \in I \}) = \cap \{ \vee^{\alpha}(A_i)^c l \ i \in I \} .$ To prove (vii), by using statement (iv) and (v) we have

$$\wedge^{\alpha}(\cup \{ A_i \mid i \in I \}) = (\wedge^{\alpha}(\cup \{ A_i \mid li \in I \})^c)^c$$

$$= (\wedge^{\alpha} (\cap \{ A_i^c \mid li \in I \}))^c$$

$$\supset (\cap \{ \wedge^{\alpha} (A_i^c) \mid li \in I \})^c$$

$$= (\cap \{ \vee^{\alpha} (A_i)^c) \mid li \in I \})^c$$

$$= \cup \{ ((\vee^{\alpha} (A_i)^c)^c \mid li \in I \}$$

$$= \cup \{ \vee^{\alpha} (A_i) \mid li \in I \} .$$

**Remark 5.10.** In the Theorem 5.9. part (vii), then in conclusion can not be replaced by equality, as the following example.

**Example 5.11.** From Example 5.8. if we put  $A = \{a\}$  and  $B = \{d\}$ . Then  $\vee^{\alpha}(A \cup B) = \{a, b\}$ , but  $\vee^{\alpha}(A) \cup \vee^{\alpha}(B) = \emptyset$ .

**Theorem 5.12.** A subset A of a topological space  $(X, \tau)$  is called an  $\alpha$ -V-set if

 $\mathbf{A}=\mathsf{V}^{\alpha}\left( \mathbf{A}\right) \,.$ 

**Proof**. The proof comes from Theorem4.7, and Theorem 5.9.

# References

[1] Caldas, M. and Dontchev, J.(2000). G. $\Lambda_s$ sets and G. $V_s$ -sets, Mem. Fac. Sci. Kochi Univ.(Math.) 21, 21– 30. [2] Dunham, W. (1977).  $T1 \setminus 2$  spaces,

Kyungpook math. J., 17, 161–169.

[3] El-Sharkasy, M. (2015). On  $\Lambda_{\alpha}$ -sets and the associated topology  $\tau^{\Lambda_{\alpha}}$ , Journal of the Egyptian Mathematical Society, 23(2), 371-376.

[4] Ganster, M., Jafar, S. and Noiri, M. (2002). On pre- $\Lambda$  -sets and pre-V-sets, Acta Math. Hungar 95 (4) 337–343.

[5] Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41.

[6] Maki, H.(1986). Generalized *Λ*-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement 1(10),139- 146.

[7] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. (1982). On precontinuous and weak precontinuous mapping, Proc. Math. Phys. Soc. Egypt (53) 47–53.

[8] Njastad, O., (1965).On some classes of nearly open sets, Pacific J. Math., 15, 961-970.
[9] Stone, M. H., (1937). Applications of the theory boolean rings to the general topology, Trans. A.M.S. 41, 375 – 481.

[10] Yaslam, M.H., (2023). On Some Generalization of ,  $\Lambda$  - Sets and  $\vee$  - Sets IN Topological Spaces, M.Sc. thesis, Faculty of Education, Aden University, Yemen,

# مفاهيم أخرى في الفضاءات الطوبولوجية للمجموعات Sets-A و Sets-V

رضوان محمد سالم عقيل قسم الرياضيات، كلية العلوم جامعة عدن، اليمن e-mail <u>salqady047@gmial.com</u>

سماح محمد أحمد القاضي قسم الرياضيات، كلية التربية جامعة عدن، اليمن e-mail <u>rageel1976 @yahoo.com</u>

#### الملخص:

في هذا البحث ، قدمنا ودرسنا مفاهيم جديدة في الفضاءات الطوبولوجية تسمى α-Λ-sets و α-۸-sets ، والتي تم تعريفها من خلال مفاهيم sets-٨- و V-sets, لقد قمنا بدراسة العديد من خواصها . كما تم دراسة علاقة هذه المفاهيم بالمفاهيم الطوبولوجية السابقة .

> الكلمات المفتاحية: الفضاءات الطوبولوجية، المجموعات α-N-sets و α-V-sets