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Abstract: In this paper, we investigate the properties of the Weyl conformal curvature tensor jikh in
the context of n =4 Riemannian and Finslerian spaces, with a particular focus on generalized
recurrent and birecurrent structures. We derive several equivalent forms of the conformal curvature
tensor under various covariant derivatives, revealing deep interrelations between curvature tensors,
Ricci tensors, scalar curvature, and their derivatives. By transvecting the conformal curvature
expressions with vectors such as y*, y*, and tensors such as g;; we deduce necessary and sufficient
conditions for the conformal curvature tensor, torsion tensor, Ricci tensor, and projective deviation
tensor to represent generalized recurrent and birecurrent Finsler spaces. The results culminate in a
sequence of theorems (Theorems 3.1 to 3.8), offering a comprehensive characterization of Gzndqh-
RE,, spaces and G Z”dqh-BRFn spaces. These findings contribute to the geometric understanding of
recurrence structures in differential geometry and extend the theoretical framework of Finsler
geometry.

Keywords: The h-Covariant derivative of first and second orders, Generalized recurrent Finsler
space, Weyl tensor ﬁch and conformal tensor Cj"kh .

1. Introduction: The concept of conformal curvature tensors, particularly the Weyl tensor, plays a
significant role in the study of differential geometry and theoretical physics. In Riemannian geometry,
the Weyl tensor characterizes the conformal properties of the manifold, providing a measure of the
deviation from conformal flatness. Extending such structures to Finsler geometry a generalization of
Riemannian geometry introduces rich geometrical complexity and broader curvature behaviors.

This study focuses on analyzing the behavior of the Weyl conformal curvature tensor Cj;,, within the
framework of Finsler spaces. In particular, we explore its recurrence properties under the context of
generalized recurrent Finsler (RF) and birecurrent Finsler (BRF) spaces, denoted as G 2”d6|h-RFn and
G 2""lCm-BRFn, respectively. The work involves detailed covariant differentiation of the Weyl tensor,
incorporation of scalar, Ricci, and projective tensors, and identification of conditions under which
these tensors preserve generalized recurrence structures.

By establishing several theorems and proving equivalence conditions for recurrence behaviors, we
provide a unified framework for understanding the conformal geometric structures in Finsler spaces.
The theoretical insights gained from this research not only deepen the algebraic understanding of
Finslerian recurrence but also set the groundwork for potential applications in modern geometric
theories.

The study of curvature tensors in Riemannian and Finsler geometries has attracted considerable
attention due to its fundamental role in understanding the intrinsic structure of manifolds and their
generalizations. Over the years, numerous researchers have contributed to the development of this area
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by introducing various types of curvature tensors and analyzing their recurrence properties and
geometric implications. Notably, the works of Abu-Donia et al. (2020), Ahsan and Ali (2014, 2016)
explored the role of www- and wxw”"*w=-curvature tensors in the context of relativistic space-times,
highlighting their significance in mathematical physics. Further, Al-Qashbari and collaborators have
made extensive contributions to the field by introducing generalized recurrent, birecurrent, and
trirecurrent Finsler structures involving higher-order covariant derivatives, such as those of Berwald
and Cartan (e.g., Al-Qashbari et al., 2024; 2025). Their studies on projective, conharmonic, and Weyl
curvature tensors within the Finslerian framework have deepened the understanding of higher-order
geometrical structures and their decomposition properties.

In addition, foundational works by Misra et al. (2014), Pandey et al. (2011), and Goswami (2017) laid
theoretical groundwork for higher-order recurrence and its applications in specialized Finsler spaces.
Meanwhile, Rund’s classic monograph (1981) continues to serve as a cornerstone reference in the
differential geometry of Finsler spaces.

This body of literature provides the essential theoretical framework and motivation for the present
study, which aims to further investigate the behavior of the conformal curvature tensor in the setting of
generalized recurrent and birecurrent Finsler spaces using higher-order covariant derivatives and
associated curvature relations.

The work of Al-Qashbari and his colleagues, including their studies on generalized recurrent Finsler
spaces and various decomposition techniques, contributes to the ongoing development of Finsler
geometry. Their research on the conformal curvature tensor and its properties in generalized Finsler
spaces provides valuable insights into the intricate relationships between curvature, torsion, and the
underlying geometric structures.

This paper builds on the foundation laid by previous studies, particularly focusing on the role of
conformal curvature tensors in generalized recurrent Finsler spaces. By extending existing methods and
exploring new techniques, we aim to deepen the understanding of the geometry of these spaces, offering
new avenues for further research in the field.

In this paper, we investigate some identities between Weyl’s tensor W-L}ch and conformal tensor jikh We
first introduce the basic concepts of Weyl’s curvature tensor and conformal tensor C} k- Then, we derive
some identities between these two tensors.

2. Preliminaries:

In this section, some conditions and definitions well be provided for the purpose of this paper. Two
vectors y; and y* meet the following conditions

Q) yi=g,¥ . b) yy' =F, ¢ &y =y*and d)Jy, =g - (2.1)
The quantities g;; and g¥/ are related by
. 1, if i=k
a)gijg]k:(sl'k:{o’ i; ik
b) gjk,h =0,0) gijn =0, d) g 5ji =g,; and e) g’ 8. =gt . (2.2)
The vector y' and metric function F are vanished identically for Cartan’s covariant derivative.
a) F, =0 and b) y' =0. (2.3)

The h-covariant derivative of second order for an arbitrary vector field with respect to x* and x/,
successively, we get

Xjiiy = 0;(Xji) — (K] )T + (X)L — (90X )T v (2.4)
Tensor jl}(h,torsion tensor ]l}( and deviation tensor Wl are defined by:

. . 2 8% :
ik = Hjen + 0005 +1)H[hk]+( +1)aH[kh]+ 2 1)(71 in + Hpj + y"0;Hp,
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Wi = Hjy + = H[Jk] +2{— s (nHy =y Hg,)}  and (2.6)
W= Hl—HS& - - +1) (0,H] — 0;H) y', respectively. (2.7)

Also, if we suppose that the tensor W]-‘ satisfy the following identities
a) Wiyk=0 , b) Wi—o, c) Wiy, =0,
d) girVVji_ rj e) g k=W and f) M/jkykzo' (28)

The conformal tensor jkh, torsion tensor C;'k, Ricci tensor Cj,, curvature vector C, and scalar
curvature C are satisfying:

3) C}khyjzclifh , b) Cipy*=C, , 0 C}kizcjk

d) Ci = Cy, e)Cl = and ) gir Cjikh = Crjkn - (2.9)
Cartan’s 3" curvature tensor }kh, Ricci tensor R-k, the vector H,, and scalar curvature H are defined as

Let us consider a Finsler space F, which the Weyl’s projective curvature tensor Wjﬁm satisfies a
generalization generalized W),-recurrent space and denoted by G2 W), — RE,. i.e. satisfies the
following condition [5 - 6]

Wiihim = AmWiien + tm(SE9jk — Skgjn) + iym(Whigjk —Wign)- (2.11)
where A,,,, i, and y,,, are non-zero covariant vectors of first order.
By taking the h — covariant derivative of (2.11), with respect to x!, we obtain:

Wienimin = @muWiien + b (85956 — 669;n) + %le(wiigjk —Wigin)

+%Ym(W}£gjk - Wlégjh)ll . (2.12)
where ay = A+ And, by = W + Ay and ¢y = (A + Vi) are non-zero covariant
tensors field of second order and y,,, is non-zero covariant victor of first order, respectively.
Definition 2.1. In Finsler space, which the Wely’s projective curvature tensor Wjﬁm satisfies the
condition (2.12) is called the generalization generalized W,,-birecurrent space and the tensor will be
called a generalization generalized h-birecurrent space. These space and tensor denote them briefly by
G*"* W,, — BRE, and G*"* h — BR, respectively.
A Finsler space F, which the curvature tensor le}m satisfies the condition (2.12) is referred to as the
generalization generalized W, — birecurrent space and denoted by G**¢ W, — BRE,.
In next section, we introduce a new class of Finsler spaces, namely, generalized C,-recurrent spaces
and generalized C,-birecurrent spaces. These spaces generalize the concept of recurrence and

birecurrence to a broader setting and exhibit interesting geometric properties. We investigate the
curvature tensor of these spaces and establish several characterization theorems.
3. Relationship Between Weyl’s Curvature Tensor and Conformal Curvature Tensor

Finsler geometry, as a generalization of Riemannian geometry, provides a powerful framework for modeling a wide
range of physical phenomena. In Finsler spaces, the curvature properties of the space are characterized by various curvature
tensors, among which Weyl and the conformal curvature tensor ‘kh play a significant role. While the geometric
interpretations and physical implications of these tensors have been extensively studied, the relationship between them
remains a subject of ongoing research. This paper aims to investigate the connection between Weyl’s curvature tensor and
the conformal curvature tensor C} ien INFinsler spaces. By exploring their algebraic and geometric properties, we seek
to establish new identities and inequalities that relate these two tensors. Our findings are expected to contribute to a deeper
understanding of the curvature structure of Finsler spaces and provide insights into their applications in physics, suchas inthe
study of gravitational theories and cosmology.
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Some properties of Wjﬁm curvature tensor was proposed by Al-Qashbari, Abdallah and Al-ssallal [4].

For (n = 4) a Riemannian space, Wey! defined the conformal curvature tensor C}, often known as
the Weyl conformal curvature tensor, as

Wikn = Cign +5 (g9;nRE — 6L Ryy) + " (8LRjn — gk RL) + 2(5;1 9jx — 6L gjn) - (3.1)
By taking the h — covariant derivative of (3.1), with respect to x™, we obtain:
Winim = Chrenm + 7 (gjnRi — 4 Rjk)lm += (8L Rin — gjx Ri )|m
1 . .
+-(R(8p gjic = 8k gjn) dim. - 3.2)
Using (2.2c), in the equation (3.2) can be written as
i i 1 i i 5(si i
Winim = Chinym + 7 (9jnRE — 6% Rjk)lm +2(8k Rin — gjx Ri )|m
1 . .
+gR|m(5rll 9jk — 6k Gjn)- (3.3)
By substituting equations (2.11) and (3.1) into (3.3), we obtain:
Chinim + 5 (gjnRi — Sh Rjk)lm +=(8k Rin — 9jx Ri )Im + Ry (8n gjk — 6k 9jn)
= A Cjn + ;Am(gthzlc — O Rjk) + glm(&c Rin = gji Rh) + glmR( Sn 9ji — O gjh)
+im(8igjn — 6h9jx )+ Ym(Wigjn — Wiigji )- (3.4)
Or, we write as
i i i i 1 i i 1 i i
Chenim = Am Ciin + bm(8k9jn — ShGjc) + 5 Ym(Wigin = Wagjn ) =5 (gjnRE — 6% Rjk)lm
5/ oi i 1 i i 1 i i
— (8L Ry — g R )|m — = Rm(8r gji — 6k gjn) + E’lm(g]'thlc — 8L Riy.)

+= A (8% Rin = Gj Ri) + = AmR( 83 gjic = 81 gjn)- (3.5)
This demonstrates that

le:khlm =Am C}kh + um(6ligjh - 5ﬁ9jk) + iym(Wkigjh - ergjk ) (3.6)
If and only if

(g9;nRL — 6} Rjk)lm = gflm(gthilc — 8L Rix),

(8 Rin — 9jx Ri )Im = Am(8% Rin = gj Ri, ) and

Rim( 6L gjk — 8L gjn) = AmR( 8L gjx — 6 gjn)- (3.7)
In conclusion the proof of theorem is completed, we can determine
Theorem 3.1. In the space G*"“(C}, — RF,, the conformal curvature tensor C}kh represents a
generalized recurrent Finsler space, provided that the condition (3.7) is satisfied.
By transvecting the condition to a higher-dimensional space as given in equation (3.5) with respect to
y/, and utilizing relations (2.9a), (2.1a), (2.3b) and (2.10a), we obtain the following result

Cintm = AmCin + tim (8hVie = Sicyn) + iym(Wkiyh ~ Wiyi) = i (ynRi — &4 Hk)lm
—Z((‘)‘,i Hn = ViR )|m _%le(siilyk - 51i3’h) + %Am(thlic — &}, Hy)

+2 A (8 Hn — YieRE ) +2 AR (8531 — Syn). (38)
This demonstrates that

Clich|m = AmChn + tm(6Lyie — 6Lyn) + iVm (Wiyn — Wiy ). (3.9)
If and only if

(thli( — &, Hk)lm = %Am(thlic - & Hk)!
(8% Hn — yiRi )Im = A (8% Hn — YR}, and
R|m(5ii1Yk - 51&)’}1) = AmR((Sliyk - 511;%1)- (3.10)
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Therefore, the proof of theorem is completed, we conclude

Theorem 3.2. In the space Gzndqh — RE,, the torsion tensor C%, (Conformal curvature tensor Cjikh)
represents a generalized recurrent Finsler space, provided that the condition (3.10) is satisfied.

By transvecting the condition to a higher-dimensional space as given in equation (3.8) with respect to
y*, and utilizing relations (n = 4), (2.9b), (2.3a), (2.3b), (2.1b), (2.8a), (2.1c) and (2.10e), we obtain
the following result

Cfillm = AnCh + ﬂm(&ize - yi)’h) + iYm[WﬁFZ ] - % (th,i( yk —36% H)lm
—>(v'Hn — F* R, — s Rim(8hF? = y'yn) +5 Am (R y* — 36} H)

5 i ; 1 . .
+ 2 Am(V Hy = F? R}) + 2 AnR(SLF? = y'yn) (3.12)
This demonstrates that
. . . i 1 .
Chym = AmCh + tm (SLF? = y'yn) + V[ WAF? |- (3.12)
If and only if

(VrRiy* =36, H), = Am(ynRiy* =38, H)

(v'Hy — F?Ry),,, = Am(y'Hy — F? R},) and

Rim(ShF* = y'yn) = AmR(SLF* = ¥'yn) - (3.13)
Therefore, the proof of theorem is completed, we conclude
Theorem 3.3. In the space G Z"dq » — RE,, the projective deviation tensor C} represents a generalized

recurrent Finsler space if and only if the tensors (y,RLy* —36; H), ( y'H, — F?R},) and R(8{F? —
y"yh) are generalized recurrent Finsler space.

By contracting the index space through summation over indices i and h in the equations (3.5), (3.8) and
(3.11), and applying relations (2.2a), (2.1a), (2.1b), (2.8b), (2.8c), (2.8d), (2.10c), (2.10d) and (2.1c), in
view of ( 2.9¢), (2.9d) and (2.9¢), we obtain the foIIowing result

Cikjm = Am G + ttm(n — D gjy — i)’m [ij] - (1 Rjjim — ( — Gjk R)Im

—=Rin(n = Dgjie + < AR — g + %amu — R + 2 A Ry = e R). (3.14)
This demonstrates that

Citepm = Am Cjic + (= Dgjic = 5 Y [Wi]. (3.15)

If and only if

Riiim = AmRjie

(Rik = 9jxR),,, = Am( Ri = gj R)

Rim = AnR. (3.16)
and

Cpm = AmCi + (= Dy — % (viRi — nHk)lm _E(Hk = YkR)m —%(n —1) Ry )im

+%/1m(yiR,ic —nH,) + Z/lm( H,— yR) + % (n— 1A,,Ryy. (3.17)
This demonstrates that

Cijm = AmCi + tm(n — 1)y . (3.18)
If and only if

(yiRlic - ”Hk)lm = lm(yiRlic - nHk)
(Hy — )’kR)|m = An(Hy — y¢R)

(RYR)|m = AnRyy - (3.19)
In the last
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Cim = AmC + i (n — DF? — > (y;RLy* - 3nH) . —2(3H = F?R)jp — =2 (RF?) 1,
+ > A (YnRE Y* = 3nH ) + 2 4, (3H — F2R) + = (n — 1A, RF2. (3.20)
This demonstrates that
Cim = AnC + t(n — DF2. (3.21)
If and only if

iRk y* = 3nH) = Ln(yaRiy"* — 3nH),

(3H — F?R);;, = 4,,(3H — F?R) and

(RF?)m = AnRF?, (3.22)
In conclusion the proof of theorem is completed, we can say
Theorem 3.4. In the space G2"C}, — RF, , Ricci tensor C;, , vector C,, and scalar C are defined in
equations (3.15), (3.18) and (3.21) , respectively, if and only if the conditions (3.16), (3.19) and (3.22)
are satisfied.
By transvecting the condition to a higher-dimensional space as given in equation (3.5) with respect to
g:r,» and utilizing relations (2.1d), (2.2c), (2.8d) and (2.9f), we obtain the following result

1 1
Crjknim = Am Crjin + Um(GrnGie — 9riedjn) + 2 Ym W9k — Wiiegjn] — > (gjnRui — gthjk)lm

- Z (grkth — gjk R )Im - i (R(grh Jik — 9rk gjh))lm + %flm(gthrk - gthjk)

5 1
+ glm(grkth — IJjk Rrh) + g/lmR( 9rn9jr — grkgjh) . (3.23)
This demonstrates that
1
Crjkh|m = Am erkh + .um(grhgjk - grkgjh) + Zym [thgjk - ergjh] . (324)
If and only if

(gthrk - gthjk) = Am(gthrk - gthjk)'
|m
j . r = r . —_— . r
(grth_ gij h)lm Am(g kth g]kR h)and

(R(grh Ijk — Yrk gjh))lm = AmR( Irndjrx — grkgjh) . (3.25)
Therefore, the proof of theorem is completed, we can say
Theorem 3.5. In the space G*"“C, — RF,, associate tensor Cj,;, (Conformal curvature tensor Cj"kh)
represents a generalized recurrent Finsler space, provided that the condition (3.25) is satisfied.

By taking the h — covariant derivative of (3.1), with respect to x™ and x* , respectively, and applying
the condition (2.2c), we get

. . 1 . . 5 . .
Wienimi = Ciknpmpi + E(gth,l( — &y Rjk)lmll +2 (8L Rin— g RE)

|m|l

+§(R(6}; gjr — 6k g,-h))lm,l - (3.26)
By substituting equations (2.12) and (3.1) into (3.26), we obtain:
i 1 P P 5 . . 1 . ,
Ciknpm +5 (9jnRi — 64, Rjk)lmll +2 (8% Rin — gji Rh )Imll +- (R(é‘,‘l Jjr — Ok gjh))lmll

= Ay Clyp, + %aml(gthll;c — 6L Rjx) + zaml(6li Rin— g RL) + %amzR(&iL 9jx — 8k gin)
+b (8L gk — 6Lgn) + icmz(Wf{gjk —Wigjn) + iym(Wiigjk —Wigin )”-
Or, we write as
Clenmit = @muClxn + by (8Lgjx — 6Lgjn) + icml(wffgjk - Wigjn)
+iYm(ergjk — WiGin )Il - %(gthzic — & Rjk.)lm” - z (8% Rin — 9ji Rh )Imll

- % (R(5ril gjx — Sk gjh))lmll + %aml (gjnRic = 8iRyx) + Zamz (8 Rin — 9jx RR)
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+= amR(8} g — Ok gjn)- (3.27)
This demonstrates that

Clrenimit = amiClin + bt (6hgjk — 6kgjn) + icml(Wiigjk —Wigin)

+iYm(Wﬁgjk — Wigjn )Il : (3.28)
If and only if

(gjnRi — 6% Rjk)lmll = ami(9jnRi. — 6% Rix),

(8L Rjn — gk R )|m|l=amz(5zic Ry — g RL) and

(R(3% 95— 0kg)), . =amR(5h g = 8 gn). (3.29)
In conclusion the proof of theorem is completed, we can determine
Theorem 3.6. In the space G2"*C, — BRF,, conformal curvature tensor C}kh represents a generalized

birecurrent Finsler space, provided that the condition (3.29) is satisfied.
By transvecting the condition to a higher-dimensional space as given in equation (3.27) with respect to
y/, and utilizing relations (2.9a), (2.1a), (2.3b) and (2.10a), we obtain the following result

Ii(,hlmll = i Chp + by (5}13’1{ — 8kyn) + icmz(WifYk - WkiYh) + %Vm(Wﬁ')’k — Wiy )Il
- % (7nRi = 5rilHk)|m|l - Z (8kHn — yiR:) %(R(é‘},}lyk - SIith)) T %aml(thIic — 8 H,)

mil Im|
+Zaml (6L H, — yiRL) + %amlR(S,ilyk —8iyn) - (3.30)

This demonstrates that

Chnimit = @miChn + byt (84 Y5 — 8kyn) +icml(Wf{yk — Wiyn)

+iYm(er3’k — Wiy )Il'
(3.31)
If and only if

(thIic — & Hk)lmll = Am ()’thic — & Hk)’

(8% Hn — yiRY, )lmll:aml (8 Hn — yiR},) and

(R(8hye = 8vn)) =amiR(85yc = 6imn) (3.32)

Im|
Therefore, the proof of theorem is completed, we conclude
Theorem 3.7. In the space G2"C};, — BRF,, the torsion tensor C;, (Conformal curvature tensor Cj"kh)
represents a generalized birecurrent Finsler space, provided that the condition (3.32) is satisfied.
By transvecting the condition to a higher-dimensional space as given in equation (3.30) with respect to
y*, and utilizing relations (n = 4), (2.9b), (2.3a), (2.3b), (2.1b), (2.8a), (2.1c) and (2.10d), we obtain
the following result

Fimit = Qi Ch + by (85F% — yiyy) + icml(W,{FZ) + iym(w,{FZ)”

— > OnRLY* =384 H) = 2(y'Hy — F?RL) | — < (R(8HF2 = yiyy,))

|m|l
+ @ (VaRLY* =364 H) + = anmu(y' Hy = F?R}) + —amR(8LF* = y'yy) - (3.33)
This demonstrates that
C;llmll = amlcill + bml(6;1F2 -y yh) + Zcml(W}:Fz) + Zym(WﬁFz)ll- (334)
If and only if

(VaRiY* =38, H), .\ = @ (ynRiY* =38, H),
(v'Hn = F?RL ),y = @mu(Y*Hn — F?RY) and
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(R(5iF? - yiyh))lm” = a,uR(6LF2 — yiy,). (3.35)
Therefore, the proof of theorem is completed, we conclude
Theorem 3.8. In the space G Z"dqh — BRE,, the projective deviation tensor C} represents a generalized
birecurrent Finsler space if and only if the tensors (y, R y* — 38, H),
(yiH, — F?RL ) and R(SLF? — y'y,) are generalized birecurrent Finsler space.
By contracting the index space through summation over indices i and h in the condition (3.27), (3.30)

and (3.33), and applying relations (n=4), (2.2a), (2.1a), (2.1b), (2.8b), (2.8c), (2.8d), (2.10c), (2.10d)
and (2.1c), in view of ( 2.9c), (2.9d) and (2.9¢), we obtain the following result

1
Cjklmll = amlcjk + bml(n - 1)gjk + Zcmka + Ym Jk|Il ((1 n) )

_E(Rjk_ gij)lmll_%(R(n_1)gjk)|m|l+5aml(1_n) jk+gamz( jk gij)

+%amlR(n —Dgjk - (3.36)
This demonstrates that
1 1
Cirymii = @mCix + bpu(n — 1) gj + 2 CmuWie + 5 VWi - (3.37)
If and only if

((1 - n)Rjk)|m|l = 0m ((1 - n)Rjk),

(Rix — gjx R)|m|z = am( Ry — g;xR) and

(R(n - 1)gjk)|m|l = apR(n —1Dgjy - (3.38)
And

1
Cpmpt = @miCr + bry(n — 1) y;, —;()’iRk nHk)l el 2 (Hy — YR mit

—%(R(n — D yidmp + %aml(yiRlic —nHy) + gamz(Hk — ¥kR) +%am1R(n —Dye. (339
This demonstrates that

Cpmit = @muCr + by(n — 1)y . (3.40)
If and only if

(lell( - nHk)lmll = aml(lellc - nHk)l

(H, — )’kR)|m|l = @y (H — y¢R) and

(R(n—1) yk)|m|l =auRMn—1)yy. (3.41)
In the last

5
Cimpt = AmiC + by (n — DF? — —(leky —3nH) —=BH = F*Rjmy1

|m|t
5
—g(n — D(RFD) |y + Eaml(yl-Rky —3nH) +=a, (3H — F°R)

+ =y (n — DRF2, (3.42)
This demonstrates that

Clmll == amlC + bml(n - 1)F2. (343)
If and only if

(viRiy* = 3nH) = am(yiRky* = 3nH),

(BH — F?*R)jm1 = apy(3H — F?R) and

(RF?) i = amRF?. (3.44)
In conclusion the proof of theorem is completed, we can say
Theorem 3.9. In the space G Z"dqh — BRE, , Ricci tensor Cj;, , vector C; and scalar C are defined in

equations (3.37), (3.40) and (3.43), respectively, provided that the conditions (3.39), (3.41) and (3.44)
are satisfied.
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By transvecting the condition to a higher-dimensional space as given in equation (3.27) with respect to
g:r,» and utilizing relations (2.2c), (2.2d), (2.8d), and (2.9f), we obtain the following result

1
Crjknimit = miCrjkn + b (9rn8jk — Grx9jn) + Zcml(thgjk — Wy 9jn)
1 1 5
+ 2 Y (Wengjie = Wiiegin),, =3 (9imRre = GrnRie) 1y, = 2 (9ricRin = G Ren )

Im|!l

- é (R(grhgjk - grkgjh))lmll + %aml (9jnRrk — grnRix) + Zaml (9riRin — Gjxc Rrn)

1
+= amR(GrnGji = Gredjn) - (3.45)
This demonstrates that

1
erkhlmll = amlcrjkh + by (grhgjk - grkgjh) + Zcml(thgjk - ergjh)

1

+ 2 Y (Wong e = Wesegn), (3.46)
If and only if

(gthrk - gthjk)lmll = aml(gthrk - gthjk)'

(9rcRin = Gji Ren )Imll = @i (9riRin — 9j Ren) and

(R(grmgc - grkgjh))lm” = amR(grngjx — Gricdjn) - (3.47)
Therefore, the proof of theorem is completed, we can say
Theorem 3.10. In the space Gzndqh — BRE,, associate tensor Cj,., (Conformal curvature tensor Cj"kh)

represents a generalized birecurrent Finsler space, provided that the condition (3.47) is satisfied.

4. Conclusions

In this work, we have established a comprehensive treatment of the Weyl conformal curvature tensor

jikh and its derivatives in the context of generalized recurrent and birecurrent Finsler spaces. Through

rigorous covariant differentiation and tensor contractions, we derived multiple characterizations of the

conformal, torsion, Ricci, and projective deviation tensors.

Our analysis led to the formulation of eight theorems (Theorems 3.1 to 3.8), each providing necessary

and sufficient conditions for a specific tensor to represent a generalized recurrent or birecurrent

structure in the Finsler space Gzndqh-RFn and GZ”dC|h-BRFn. These results highlight the critical role

of conformal geometry in characterizing the intrinsic structure of Finsler spaces and contribute

significantly to the broader field of differential geometry.

Future studies may build upon this framework to investigate applications in gravitational theories,

spacetime models in physics, and further generalizations in Finsler and pseudo-Finsler geometry. The

findings also suggest potential for exploring higher-order recurrence conditions and their geometric

implications.

5. Recommendations

Based on the results of this research, we recommend the following directions for future research:

o Explore other types of decompositions: Investigate different decomposition schemes and their
corresponding geometric interpretations.

e Investigate the physical implications: Explore the physical implications of the decomposition
results, particularly in the context of field theories and cosmology.

e Develop numerical methods: Develop numerical methods for computing the decomposed tensors
and analyzing their properties.
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