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1. Introduction: Finsler geometry, as a natural generalization of Riemannian geometry, allows for the 

investigation of more intricate curvature structures and tensorial behaviors. Within this broader 

framework, recurrence conditions on curvature tensors have long served as a cornerstone for 

understanding the intrinsic properties of the space. Classical notions such as recurrent and R-recurrent 

spaces have been widely studied; however, their generalizations in the context of Finsler spaces offer a 

deeper exploration into the interplay of curvature, torsion, and directional dependence. 

In this study, we propose a new class of Finsler spaces generalized   -recurrent spaces characterized 

by a condition involving the h-covariant derivative of the Cartan’s third curvature tensor.  

This condition introduces three distinct covariant vector fields that modulate the recurrence behavior, 

thereby generalizing existing definitions. By exploring transvections, contractions, and covariant 

derivatives under this framework, we derive a sequence of equivalent forms, each revealing structural 

aspects of the geometry. 

The paper is organized as follows: In Section 2, we define the generalized   -recurrent condition and 

derive its equivalent formulations. Section 3 focuses on deriving key identities and presenting a series 

of theorems that govern the behavior of curvature and torsion tensors under this generalized recurrence. 

These results not only reinforce the internal consistency of the defined structure but also highlight 

novel relations absent in classical settings. 

Through this work, we aim to contribute to the deeper understanding of curvature structures in Finsler 

spaces and to open potential pathways for further generalizations and applications in geometric 

analysis and theoretical physics. 

The theory of recurrence in differential geometry plays a central role in understanding the intrinsic 

structures of manifolds, particularly within the context of Finsler geometry. Over the past few decades, 
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numerous researchers have contributed to the classification and analysis of recurrent and generalized 

recurrent structures through the study of curvature tensors and covariant derivatives. 

Early foundational work on recurrent manifolds was carried out by Dubey and Srivastava [1981], De 

and Guha [1991], and Matsumoto [1971], who explored various forms of recurrence including h-

isotropic and   -recurrent conditions. These contributions were further enriched by investigations into 

higher-order and specialized recurrences by scholars such as Mishra and Lodhi [2008], Pandey et al. 

[2011], and Misra et al. [2014], all of whom extended recurrence theory to accommodate more intricate 

geometric and physical interpretations. 

In more recent developments, Ahsan and Ali [2014, 2016] focused on properties of curvature tensors in 

general relativity and their implications in the broader setting of Finsler spaces. Meanwhile, Al-

Qashbari and his collaborators have made significant contributions to the field by examining various 

generalized curvature tensors including Berwald, Cartan, Weyl, and M-projective tensors using higher-

order derivatives and Lie derivatives in Finsler manifolds [Al-Qashbari et al., 2017–2025]. 

Notably, studies such as those by Al-Qashbari et al. [2024, 2025] introduced new types of generalized 

recurrent Finsler structures through decomposition and transformation of curvature tensors, including 

the analysis of   -covariant derivatives and recurrence of the fifth order. These efforts have not only 

enriched the classification of Finsler spaces but also expanded the algebraic and geometric tools used 

to explore their properties. 

Building on this substantial body of work, the present study introduces and investigates a new class of 

Finsler spaces, referred to as generalized   -recurrent spaces. Defined through a recurrence condition 

imposed on Cartan’s third curvature tensor and controlled by three non-null covariant vector fields, this 

class of spaces reveals structural symmetries and invariant identities that generalize classical 

recurrence conditions. The results obtained contribute to both the theoretical development of Finsler 

geometry and its potential applications in mathematical physics. 

       Let us consider an n-dimensional Finsler space equipped with the metric function F satisfying the 

requisite conditions. Let consider the components of the corresponding metric tensor    , Cartan's 

connection parameters    
   and Berwald’s connection parameters     

 . These are symmetric in their 

lower indices and positively homogeneous of degree zero in the directional arguments.  

The two sets of quantities     and its associate tensor     are related by  

(1.1)                
     

   {   
                              
                              

     

The vectors      and     satisfies the following relations 

(1.2)           a)             
      ,       b)       

       ,      c)        ̇      ̇      , 

                   d)        
   

 

 
  ̇   

     ̇       and             e)    ̇   
    

    . 

The tensor        defined by   

(1.3)                
 

 
  ̇       

 

 
  ̇   ̇   ̇   

        

is known as (h) hv - torsion tensor. It is positively homogeneous of degree  -1 in the  

directional arguments and symmetric in all its indices.    

The (v) hv-torsion tensor       
 and its associate (h) hv-torsion tensor       are related by 

(1.4)           a)          
         

          
      ,     b)      

        
         

and             c)       
            . 

The (v) hv-torsion tensor      
 is also positively homogeneous of degree -1 in the directional arguments 

and symmetric in its lower indices.   

        . Cartan deduced the h-covariant derivative for an arbitrary vector filed    with respect to      

(1.5)            
 ׀
      

  (  ̇   
  )   

         
      . 
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The metric tensor      and the vector     are covariant constant with respect to a above process, i.e.           

(1.6)           a)       ׀       ,     b)     
 ׀
        and    c)     

 ׀

  
    .  

The process of h-covariant differentiation with respect to    commute with partial differentiation with 

respect to    for arbitrary vector filed    , according to 

 ׀ ) ̇            (1.7)
 )  ( ̇   

 )
 ׀
   ( ̇     

  )  ( ̇  
 )     

    , where  

(1.8)           a)    ̇    
       

     ,   b)       
          

      and   c)        
         

  . 

The tensor      
  is called v(hv) –torsion tensor and its associate tensor       is given by 

(1.9)           a)          
        .    

The associate tensor          of the (hv)-curvature tensor         
   is given by 

(1.9)           b)           
           . 

The quantities      
 and    

 form the components of tensors and they called h-curvature tensor of 

Berwald  ( Berwald curvature tensor ) and  h(v)-torsion tensor, respectively, and defined as follow: 

(1.10)         a)       
        

     
      

       
   

        
     

      
       

     
   ,   

An              b)      
         

      
     

         
      

     
    . 

They are skew-symmetric in their lower indices, i.e.    and   . Also they are positively homogeneous 

of degree zero and one, respectively in their directional arguments. They are also related by   

(1.11)         a)       
        

    ,    b)       
        

      and   c)      
       

   . 

These tensors were constructed initially by mean of the tensor     
 , called the deviation tensor, given by  

(1.12)           
        

        
           

        
     

  . 

The deviation tensor     
 is positively homogeneous of degree two in the directional  arguments.  

In view of  Euler's theorem  on  homogeneous functions and by contracting the indices i  and  h  in 

(1.11) and (1.12), we have the following:       

(1.13)         a)       
           

        
    and   b)         

     . 

The quantities        
 and      

 are satisfies the following  

(1.14)         a)                  
  ,  b)                

   and   c)          
     . 

Cartan's third curvature tensor     
  satisfies the identity known as Bianchi identity  

(1.15)         a)       ׀ 
 ׀      

 ׀      
  (    

     
      

     
      

     
 )      

and             b)                     (         
           

           
 )        , 

where         c)       
   ̇    

 ׀      
      

  ׀    
     . 

The Ricci tensor      , the deviation tensor   
  and the curvature scalar   of the curvature tensor     

  

are given by 

(1.16)         a)       
        

      
      ,    b)                 

   , 

                          c)           
          ,   d)       

             and   e)        
        

   , 

The contracted tensor    (Ricci tensor) and    (Curvature vector) are also connected by  

(1.17)         a)        
      ,   b)        

     ,   c)       
       and   c)     

    .     

Also this tensor satisfies the following relation too 

(1.18)          a)      
      

     
       

      ,    b)                        
   , 

and             c)           
          . 

where      is the associate curvature tensor of     
 . Cartan’s fourth curvature tensor     

  and its 

associate curvature tensor of      satisfy the following known as Bianchi identities  

(1.19)         a)       
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and             b)                          .  

 

2. Structural Properties of Generalized   -Recurrent Finsler Spaces 

          The study of curvature recurrence in Finsler geometry has long provided deep insights into the 

underlying structure and symmetries of geometric manifolds. In this paper, we introduce and 

investigate a new class of Finsler spaces, referred to as generalized   -recurrent Finsler spaces. These 

spaces are characterized by a specific h-covariant derivative condition imposed on Cartan’s third 

curvature tensor     
 , involving three non-vanishing covariant vector fields        and    . 

We show that such a condition leads to a set of equivalent curvature identities that govern the behavior 

of important geometric objects such as the torsion tensor, the deviation tensor, the Ricci tensor, and the 

curvature scalar. Through a series of transvections and tensor contractions, we derive explicit forms for 

the h-covariant derivatives of these tensors and prove their non-vanishing nature under the defined 

structure. These results not only generalize previously known types of recurrence in Finsler spaces but 

also demonstrate a rich geometric structure that could serve as a foundation for further developments in 

both pure mathematics and mathematical physics. The analysis confirms that the generalized 

recurrence condition imposed on the curvature tensor preserves non-trivial geometric content, making 

the    -    spaces an important addition to the classification of Finsler manifolds. 

Let us consider a Finsler space    whose Cartan's third curvature tensor     
   satisfies the following 

condition  

 ׀            (2.1)
        

    (  
        

     )  
 

 
  (   

        
     )   ,         

     , 

where        and    are non-null covariant vectors field. We shall call such space as a generalized   -

recurrent space. We shall denote it briefly by    -    . 

Transvecting of (2.1) by the metric tensor     , using (1.6a), (1.16b) and in view of (1.1), where we 

suppose that        
      , we get  

(               )             ׀             (2.2)  
 

 
  (               )  . 

Conversely, the transvection of the condition (2.2) by the associate tensor     of the metric tensor      ,  

yields the condition (2.1). Thus, the condition (2.2) is equivalent to the condition (2.1). Therefore a 

generalized   - recurrent space characterized by the condition (2.2). 

Consequently, we deduce the following theorem  

Theorem 2.1. A Finsler space    -    is fully characterized by the h-covariant derivative condition 

given in equation (2.2). This condition serves as an equivalent reformulation of the original definition 

(2.1), thereby establishing it as a defining property of generalized   -recurrent Finsler spaces. 

Let us consider    -     characterized by the condition (2.2). 

Transvecting the condition (2.1) by   , using (1.6b), (1.16a) and (1.2a), we get  

 ׀           (2.3)
       

    (   
      

    )  
 

 
  (   

       
   )   . 

Further, transvecting (2.3) by   , using (1.6b),(1.13a), (1.2b) and in view of (1.1), we get  

 ׀          (2.4)
      

    (  
         

 )  
 

 
  (   

       
     

 )   . 

From the preceding derivations, we establish the following result, formulated as Theorem 2.2 

Theorem 2.2. In a generalized    -    space, the h-covariant derivatives of the h(v)-torsion tensor 

    
  and the deviation tensor    

  are governed by the differential relations given in equations (2.3) and 

(2.4), respectively. These conditions highlight the inherent structural recurrence of these tensors in 

such a Finsler manifold. 

Contracting the indices     and     in the condition (2.1), using (1.17c), (1.17d) and (1.1), we get  

        (   )        ׀           (2.5)
 

 
  (         

    )  . 
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Transvecting (2.5) by    , using (1.6b), (1.17a) and (1.2a), we get  

       (   )        ׀          (2.6)
 

 
  (        

      
 )   . 

Further, transvecting the condition (2.1) by the associate tensor     of the metric tensor      , using 

(1.6c), (1.16e) and in view of (1.1), we get  

 ׀          (2.7)
        

    (    )   
  

 

 
  (   

     
   

 )  . 

Contracting the indices     and     in condition (2.7), using (1.17d) and (1.1), we get  

    (   )         ׀         (2.8)
 

 
  (      

   
 )  . 

The conditions (2.5), (2.6), (2.7) and (2.8), show that the Ricci tensor     , the curvature vector    , the 

deviation tensor    
  and the curvature scalar   of a generalized   -recurrent space cannot vanish, 

because the vanishing of them imply the vanishing of the covariant vector field     ,  i.e.       ,  a 

contradiction. 

From the above analysis, we establish that 

Theorem 2.3. In a generalized    -    space, the Ricci tensor    , the curvature vector    , the 

deviation tensor    
 , and the scalar curvature   are all necessarily non-vanishing. Their non-vanishing 

nature is an essential consequence of the defining recurrence condition, and any assumption to the 

contrary would lead to a contradiction with the vector field       . 

3. Identities Involving Higher-Order h-Covariant Derivatives and Torsion 

    Structures in Generalized   -Recurrent Finsler Spaces 

          In this section, we derive and examine several fundamental identities involving h-covariant 

derivatives of curvature tensors and torsion tensors within the framework of generalized   -recurrent 

Finsler spaces, denoted as    -   . These identities reveal deep interconnections among the Cartan 

connection, the Berwald connection, and their associated torsion structures. The results are obtained 

through successive transvections, contractions, and applications of key differential geometric relations, 

yielding concise formulations that further characterize the internal structure of    -    spaces. These 

findings not only enrich the algebraic structure of such manifolds but also provide a foundation for 

investigating more complex geometric behaviors in advanced Finsler geometry. 

Taking h- covariant differentiation of the formula (1.15b) with respect to      in the sense of Cartan and 

transvecting (1.15b) by the associate tensor     of the metric tensor      , using (1.6c), (1.16a), (1.16d) 

and (1.4a), we get  

(3.1)        (   
 
    
             

              
 )

 ׀
   

 ׀   

 
   ׀         

 .   ׀       

Transvecting (3.1) by   , using (1.6b), (1.16a), (1.18c), (1.4b) and (1.4a), we get  

(3.2)         
 ׀  

 
   ׀         )  

 .  ( ׀        

Thus, we conclude Theorem 3.1 

Theorem 3.1. In a generalized   -recurrent Finsler space    -   , the following identities (3.1) and 

(3.2) hold. 

Using (1.16b) and (1.16a) in the identity (1.15b), we get 

(3.3)               
         

         
          

          
          

     . 

Now, transvecting (3.3) by    , using (1.16a) and (1.4b), we get  

                       
          

          
      . 

Transvecting the above equation by    , using (1.2a), we get  

(3.4)             
       

       
      . 

By using (1.14b), the equation (3.4) yields to 

(3.5)                              . 

Transvecting (3.4) by    , using (1.13a) and (1.2a), we get  . 
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     . 

Transvecting the above equation by    , using (1.2a), we get  

(3.6)             
        

     . 

Consequently, the findings above lead to the formulation of the following theorem 

Theorem 3.2. In a generalized   -recurrent Finsler space    -   , the torsion tensor    
   satisfies 

the following cyclic and symmetry identities in (3.4), (3.5), and (3.6). 

Using (1.16a) in the identity (1.15a), we get 

(3.7)              
        

        
      

     
      

     
       

     
      . 

In view of the condition (2.1), the identity (3.7), may be written as 

(3.8)               
        

         
    (  

       
    )    (  

       
    )      

                    (  
       

    )  
 

 
  (   

        
     )  

 

 
  (   

        
     ) 

                 
 

 
  (   

        
     )  (    

     
      

     
     

     
 )      . 

Transvecting (3.8) by      , using (1.16a), (1.2a) and (1.8c), we get  

(3.9)             
        

       
    (   

       
    )    (  

       
    )      

                    (  
      

     )  
 

 
  (   

       
    )  

 

 
  (   

       
    ) 

                 
 

 
  (   

       
    )  (    

    
      

    
      

    
 )     . 

Transvecting (3.9) by   , using (1.13a), (1.2b), (1.1) and (1.8b), we get  

(3.10)           
       

        
    (    

        
 )    (    

     
   )       

                    (  
        

    )  
 

 
  (   

       
     

 )  
 

 
  (   

    
     

   ) 

                
 

 
  (   

       
    )  (    

    
      

    
 )      , 

where      
     ,      

      and       
      . 

These derivations lead us to assert the following 

Theorem 3.3. In a generalized   -recurrent Finsler space    -   , the curvature tensor and the 

torsion tensor satisfy the following identities (3.9) and (3.10). 

Further, transvecting (3.9) and (3.10) by the vector     , using (1.14c), (1.1),(1.13b) and (1.2b), such 

that        , we get   

(3.11)        (   
       

    )    (   
       

    )     (   
       

    ) 

                   (     
    

       
    

       
    

 )         

and 

(3.12)          (   
       

     
 )    (   

    
     

   ) 

                    (   
       

    )      
    

      
    

     . 

Respectively. Thus, we conclude 

Theorem 3.4. In the generalized   -recurrent Finsler space    -   , the identity given by equation 

(3.11) holds valid and reflects an intrinsic geometric property of the space. 

Theorem 3.5 In the generalized   -recurrent Finsler space    -   , the relation expressed in 

equation (3.12) is satisfied, confirming the compatibility conditions between the curvature tensors and 

the recurrence structure. 

Transvecting (3.8), (3.9) and (3.10) by the metric tensor     , using (1.16b), (1.1), (1.9b), (1.14b), 

(1.9a) and (1.2a), we get   

(3.13)                                    (                 )       

                     (                 )    (                  ) 

                 
 

 
  (   

        
     )     

 

 
  (   

        
     )     
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  (   

        
     )     (    

           
          

       )    ,  

 

(3.14)                                 
 

 
  (   

       
    )     

                 
 

 
  (   

       
    )     

 

 
  (   

       
    )     

                 (    
          

           
     )       ,  

and 

(3.15)          (      
        

       
 )     (     

       )       

                     (           
 )    (              )  

 

 
  (   

       
     

 )     

                 
 

 
  (   

    
     

   )     
 

 
  (   

       
    )     

                 (    
          

      )     . 

These derivations lead us to assert the following 

Theorem 3.6. In the generalized   -recurrent Finsler manifold    -   , the identities represented by 

equations (3.13), (3.14), and (3.15) are all valid. These relations result from the transvection of 

previously derived fundamental identities by the metric tensor and illustrate the deep interdependence 

between the curvature tensors, torsion tensors, and the structure coefficients of the Finsler space. 

4. Conclusions  

         In this paper, we have introduced and systematically studied a new class of Finsler spaces, 

denoted by    -   , characterized by a generalized recurrence condition involving Cartan’s third 

curvature tensor and three non-zero covariant vector fields. We demonstrated the equivalence between 

multiple formulations of the generalized recurrence condition through transvection and contraction 

operations. Our investigation revealed that essential geometric objects such as the Ricci tensor, 

deviation tensor, curvature vector, and scalar curvature are inherently non-vanishing in this class of 

spaces, highlighting a rigid and rich structure compared to classical recurrent spaces. Furthermore, we 

derived and verified a set of fundamental identities involving curvature and torsion tensors that 

enhance the theoretical foundation of these spaces. 

The results not only generalize existing concepts in Finsler geometry but also offer a broader 

framework for further explorations. Potential future work includes the study of such generalized 

recurrent structures under different connections, applications in physical models, and the development 

of invariant properties under geometric transformations. 
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  للأطر الريواًية الوعووة هي الٌوع الاساسية تطابقاتوية والائالبٌ الخصائص

 في الفضاءات الفيٌسلرية    -التكراري 

ييسقاسن ححوذ ه هحسي            
1

2،3 عادل هحوذ علي القشـبري                                                       
 

       قسن الرياضيات، كلية التربية عدن، جاهعة عدن                                       ، جاهعة عدنالضالعقسن الرياضيات، كلية التربية     

 عدن -جاهعة العلىم والتكنىلىجيا  -كلية الهندسة والحاسبات -قسن الهندسة الطبية                                                                                   

 

 

 

 الفضاءات الفينسلرية ذات في هذه الورقة البحثية، نقدم وندرس صنفًا جديدًا من الفضاءات الفينسلرية يُطلق عليه اسم :الولخص 

يتم تعريف هذا الصنف من خلال شرط تكرار معمم يُفرض على     -     ، ويرمز لها بـ     التكرار العام المعمم من نوع

موتر الانحناء الثالث لكارتان، ويشمل ثلاثة حقول متجهة تباينية غير منعدمة. نستنتج الخصائص الأساسية لهذه الفضاءات، ونثبت 

 ،h(v)موتر الالتواء من نوع تساويها من خلال عدة تطابقات موترية. كما نحلل سلوك بعض الكيانات الهندسية المرتبطة مثل 

وموتر ريشي، والمتجه الانحنائي، وموتر الانحراف، والانحناء القياسي. علاوة على ذلك، نبرهن على عدد من التطابقات غير 

ع البديهية التي تتضمن مشتقات تباينية وتقلصات، مما يكشف عن تناظرات داخلية غنية. وتُختتم الدراسة بعدة مبرهنات بنيوية تُوس  

 .من المفاهيم التقليدية للتكرار في هندسة فينسلر

 .، موتر الانحناء، المشتقات التباينية   هندسة فينسلر، الفضاءات ذات التكرار المعمم، التكرار من نوع  الكلوات الوفتاحية:


