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Abstract: In this paper, we introduce and investigate a new class of Finsler spaces, termed
generalized R"-recurrent Finsler spaces, denoted by GR™-RE,. These are defined via a
generalized recurrence condition imposed on Cartan’s third curvature tensor, involving three
non-null covariant vector fields. We derive the fundamental characterizations of such spaces and
establish their equivalence through multiple tensorial identities. The behavior of related
geometric objects such as the h(v)-torsion tensor, Ricci tensor, curvature vector, deviation
tensor, and scalar curvature is analyzed. Furthermore, several non-trivial identities involving
covariant derivatives and contractions are proven, demonstrating rich internal symmetries. The
study concludes with a series of structural theorems that extend classical recurrence concepts in
Finsler geometry.

Keywords: Finsler geometry, Generalized recurrent spaces, R"-recurrence , Curvature tensor,
Covariant derivatives.

1. Introduction: Finsler geometry, as a natural generalization of Riemannian geometry, allows for the
investigation of more intricate curvature structures and tensorial behaviors. Within this broader
framework, recurrence conditions on curvature tensors have long served as a cornerstone for
understanding the intrinsic properties of the space. Classical notions such as recurrent and R-recurrent
spaces have been widely studied; however, their generalizations in the context of Finsler spaces offer a
deeper exploration into the interplay of curvature, torsion, and directional dependence.

In this study, we propose a new class of Finsler spaces generalized R"-recurrent spaces characterized
by a condition involving the h-covariant derivative of the Cartan’s third curvature tensor.

This condition introduces three distinct covariant vector fields that modulate the recurrence behavior,
thereby generalizing existing definitions. By exploring transvections, contractions, and covariant
derivatives under this framework, we derive a sequence of equivalent forms, each revealing structural
aspects of the geometry.

The paper is organized as follows: In Section 2, we define the generalized R"-recurrent condition and
derive its equivalent formulations. Section 3 focuses on deriving key identities and presenting a series
of theorems that govern the behavior of curvature and torsion tensors under this generalized recurrence.
These results not only reinforce the internal consistency of the defined structure but also highlight
novel relations absent in classical settings.

Through this work, we aim to contribute to the deeper understanding of curvature structures in Finsler
spaces and to open potential pathways for further generalizations and applications in geometric
analysis and theoretical physics.

The theory of recurrence in differential geometry plays a central role in understanding the intrinsic
structures of manifolds, particularly within the context of Finsler geometry. Over the past few decades,
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numerous researchers have contributed to the classification and analysis of recurrent and generalized
recurrent structures through the study of curvature tensors and covariant derivatives.

Early foundational work on recurrent manifolds was carried out by Dubey and Srivastava [1981], De
and Guha [1991], and Matsumoto [1971], who explored various forms of recurrence including h-
isotropic and C"-recurrent conditions. These contributions were further enriched by investigations into
higher-order and specialized recurrences by scholars such as Mishra and Lodhi [2008], Pandey et al.
[2011], and Misra et al. [2014], all of whom extended recurrence theory to accommodate more intricate
geometric and physical interpretations.

In more recent developments, Ahsan and Ali [2014, 2016] focused on properties of curvature tensors in
general relativity and their implications in the broader setting of Finsler spaces. Meanwhile, Al-
Qashbari and his collaborators have made significant contributions to the field by examining various
generalized curvature tensors including Berwald, Cartan, Weyl, and M-projective tensors using higher-
order derivatives and Lie derivatives in Finsler manifolds [Al-Qashbari et al., 2017-2025].

Notably, studies such as those by Al-Qashbari et al. [2024, 2025] introduced new types of generalized
recurrent Finsler structures through decomposition and transformation of curvature tensors, including
the analysis of G"-covariant derivatives and recurrence of the fifth order. These efforts have not only
enriched the classification of Finsler spaces but also expanded the algebraic and geometric tools used
to explore their properties.

Building on this substantial body of work, the present study introduces and investigates a new class of
Finsler spaces, referred to as generalized R"-recurrent spaces. Defined through a recurrence condition
imposed on Cartan’s third curvature tensor and controlled by three non-null covariant vector fields, this
class of spaces reveals structural symmetries and invariant identities that generalize classical
recurrence conditions. The results obtained contribute to both the theoretical development of Finsler
geometry and its potential applications in mathematical physics.

Let us consider an n-dimensional Finsler space equipped with the metric function F satisfying the
requisite conditions. Let consider the components of the corresponding metric tensor g;;, Cartan's
connection parameters 1“1,‘c and Berwald’s connection parameters jik. These are symmetric in their
lower indices and positively homogeneous of degree zero in the directional arguments.

The two sets of quantities g;; and its associate tensor g*/ are related by
b waren=(3 4 TE

The vectors y; and y' satisfies the following relations

(1.2) ) yi=g;y . b)) yiy=F*, ¢ g=0;y;=0;y,
d) gl]y]=§alF2=F61F and 9) ajyl=5}
The tensor C;;, defined by
1 . 1 . . .
(1.3) Cijk =3 0;i Gjr = 7 0; 0; Oy F?

is known as (h) hv - torsion tensor. It is positively homogeneous of degree -1 in the
directional arguments and symmetric in all its indices.
The (v) hv-torsion tensor C[: and its associate (h) hv-torsion tensor C; jx are related by
(1.4) a) Cipy' =Crijy' =Ciay' =0, b) Chy =Ci;y/ =0
and c) Ch =g" Cijp .
The (v) hv-torsion tensor C} is also positively homogeneous of degree -1 in the directional arguments
and symmetric in its lower indices.
E. Cartan deduced the h-covariant derivative for an arbitrary vector filed X* with respect to x*
(1.5) X, =0, X' —(0,X")GL + X" Tk

On the Structure and Identities of Generalized R"-Recurrent Finsler Spaces Husien and Al-Qashbari
77



JEF/Journal of Education Faculties o6 el — Ayl UK Y2

Volume 19, Issue (1), 2025 ¢ 2025 «(1) 33l <19 A

The metric tensor g;; and the vector y* are covariant constant with respect to a above process, i.e.
(1.6) a) gyx=0 , b) y,=0 and ¢) g, =0.

The process of h-covariant differentiation with respect to x* commute with partial differentiation with
respect to y’/ for arbitrary vector filed X , according to

@n  4(xL) - (8 x), =x7(8 i) — (3,X°) P, where

(1.8) a) ajr;ﬁc = F}?;k , b) Plhy*¥=0=Py,y" and c) Pjikhyj = Pjikh .

The tensor P}, is called v(hv) —torsion tensor and its associate tensor Pjyy, is given by

(1.9) a) Grj Pen = Pjn -

The associate tensor P, of the (hv)-curvature tensor P }kh is given by

(1.9) b) gir Pikn = Pijkn

The quantities }kh and H},form the components of tensors and they called h-curvature tensor of
Berwald ( Berwald curvature tensor ) and h(v)-torsion tensor, respectively, and defined as follow:
(1.10) 8) Hjun = 0; Gin + G Gty + Glyj G — 0; Gy — Gl Gy — Gl G,

An b) Hin =0y Gi + Gi Cly— 3 G, — GJ, Cjy

They are skew-symmetric in their lower indices, i.e. k and h . Also they are positively homogeneous
of degree zero and one, respectively in their directional arguments. They are also related by

(1.11) a) Hy,y/ =Hi, , b) Hiy,=0Hp, and c) Hfy =0;Hj .

These tensors were constructed initially by mean of the tensor H, , called the deviation tensor, given by
(1.12) H:=20,G"—0, G} y" +2G:,G° — Gl G} .

The deviation tensor H}, is positively homogeneous of degree two in the directional arguments.

In view of Euler's theorem on homogeneous functions and by contracting the indices i and h in
(1.11) and (1.12), we have the following:

(1.13) a) Hjy =—H,y =H, and b) y,H =0 .

The quantities Hj,, and Hj, are satisfies the following

(1.14) a) Hijkn = 9jrHipk + b) Hyen = gjrHpe and c) y; jik =0 .

Cartan's third curvature tensor }kh satisfies the identity known as Bianchi identity

(115) a) Rjikms + R;sklh + Rjih5|k + (R:nhs jikr + R:nkhpjisr + R:nsk jihr) ym =
and b) Rijnk + Rinkj + Rikjn + (Cijs Kink + Cins K j + Ciks Krsjh) y'=0,

where C) Pl =0sTy] — Cly + Chn Clan v*
The Ricci tensor Rj, , the deviation tensor R;, and the curvature scalar R of the curvature tensor R}kh
are given by
(1.16) a) Rjikh y/ = Hjy = K]lhk y/ ., b) Rijnic = grj Rink
) RinmY’ = Hinm » d) Rl =g’ Ry and €) Rj, g/ =R},
The contracted tensor Ry, (Ricci tensor) and R, (Curvature vector) are also connected by
(1.17) a) Rpy*=R;, b) Ryy/ =H,, ¢) Rj); =Ry, and c) Ri=R.
Also this tensor satisfies the following relation too
(1.18) 8) Riyn = Kin + Cs K3 Y™+ B) Rijin = Kijn + Cijs Higp
and ¢) Rikam y' = Hinm
where R;j,is the associate curvature tensor of R}kh. Cartan’s fourth curvature tensor Kjikh and its
associate curvature tensor of K;,,satisfy the following known as Bianchi identities

(1.19) ) Kin+Kij+Kin;=0
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and b) Kjrkn + Knrjk + Kirnj = 0

2. Structural Properties of Generalized R®-Recurrent Finsler Spaces

The study of curvature recurrence in Finsler geometry has long provided deep insights into the
underlying structure and symmetries of geometric manifolds. In this paper, we introduce and
investigate a new class of Finsler spaces, referred to as generalized R"-recurrent Finsler spaces. These
spaces are characterized by a specific h-covariant derivative condition imposed on Cartan’s third
curvature tensor R}kh, involving three non-vanishing covariant vector fields 4;, w; and y, .
We show that such a condition leads to a set of equivalent curvature identities that govern the behavior
of important geometric objects such as the torsion tensor, the deviation tensor, the Ricci tensor, and the
curvature scalar. Through a series of transvections and tensor contractions, we derive explicit forms for
the h-covariant derivatives of these tensors and prove their non-vanishing nature under the defined
structure. These results not only generalize previously known types of recurrence in Finsler spaces but
also demonstrate a rich geometric structure that could serve as a foundation for further developments in
both pure mathematics and mathematical physics. The analysis confirms that the generalized
recurrence condition imposed on the curvature tensor preserves non-trivial geometric content, making
the GR"-RE, spaces an important addition to the classification of Finsler manifolds.

Let us consider a Finsler space F, whose Cartan's third curvature tensor R, satisfies the following
condition

(2.1) R;kh” = /11R]i'kh + #1(5fil gjx — ) gjh) + iy{’(Rfil 9jk — R gjh) ) Rjikh 0,

where A;, u, and y, are non-null covariant vectors field. We shall call such space as a generalized R"-
recurrent space. We shall denote it briefly by GR"-RE, .

Transvecting of (2.1) by the metric tensor g,, , using (1.6a), (1.16b) and in view of (1.1), where we
suppose that g;,, Rk = Ry , We get

(2.2) Ripkni = 4 Rjpin + .Ul(ghp 9jx — Gip gjh) + iyf(Rph Jjk — Rpk gjh) .

Conversely, the transvection of the condition (2.2) by the associate tensor g of the metric tensor Jip »
yields the condition (2.1). Thus, the condition (2.2) is equivalent to the condition (2.1). Therefore a
generalized R"- recurrent space characterized by the condition (2.2).

Consequently, we deduce the following theorem

Theorem 2.1. A Finsler space GR"-RE, is fully characterized by the h-covariant derivative condition
given in equation (2.2). This condition serves as an equivalent reformulation of the original definition
(2.1), thereby establishing it as a defining property of generalized R"-recurrent Finsler spaces.

Let us consider GR"-RE, characterized by the condition (2.2).

Transvecting the condition (2.1) by y/, using (1.6b), (1.16a) and (1.2a), we get

(2.3) H;ih,l = L Hip + Aul(5fil ) J’h) + iV#(RriLyk — Rj, Yh) .

Further, transvecting (2.3) by y*, using (1.6b),(1.13a), (1.2b) and in view of (1.1), we get

(24)  Hy, = AH +w(8h F2 =y y') +2ve(RLF? — Ry, y*)

From the preceding derivations, we establish the following result, formulated as Theorem 2.2

Theorem 2.2. In a generalized GR"-RE, space, the h-covariant derivatives of the h(v)-torsion tensor
Hi, and the deviation tensor H}, are governed by the differential relations given in equations (2.3) and
(2.4), respectively. These conditions highlight the inherent structural recurrence of these tensors in

such a Finsler manifold.
Contracting the indices i and h in the condition (2.1), using (1.17c), (1.17d) and (1.1), we get

1 i
(2.5) Ry = AR + (n—1) p; gjic + ;Ve(R gix —RLg;i) -
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Transvecting (2.5) by y* , using (1.6b), (1.17a) and (1.2a), we get
1 .
(2.6) Ry=A4R+(n—1)wy +ZV£’(Ryj_RIlcgjiyk)
Further, transvecting the condition (2.1) by the associate tensor g’ of the metric tensor Jjk » using
(1.6¢), (1.16¢€) and in view of (1.1), we get

(27)  Ri, =X R +u(n—1) 8 +-ve(Rh — RLSK) .

Contracting the indices i and h in condition (2.7), using (1.17d) and (1.1), we get
(2.8) Rll=/11R+n(n—1)ul+iyg(R—R,‘;6ik) :
The conditions (2.5), (2.6), (2.7) and (2.8), show that the Ricci tensor R, , the curvature vector R; , the
deviation tensor R} and the curvature scalar R of a generalized R"-recurrent space cannot vanish,
because the vanishing of them imply the vanishing of the covariant vector field y,, ie. y; =0, a
contradiction.
From the above analysis, we establish that
Theorem 2.3. In a generalized GR"-RF, space, the Ricci tensor Rj, the curvature vector R;, the
deviation tensor R} , and the scalar curvature R are all necessarily non-vanishing. Their non-vanishing
nature is an essential consequence of the defining recurrence condition, and any assumption to the
contrary would lead to a contradiction with the vector field y; = 0.
3. Identities Involving Higher-Order h-Covariant Derivatives and Torsion

Structures in Generalized R"-Recurrent Finsler Spaces

In this section, we derive and examine several fundamental identities involving h-covariant
derivatives of curvature tensors and torsion tensors within the framework of generalized R"-recurrent
Finsler spaces, denoted as GR"-RE,. These identities reveal deep interconnections among the Cartan
connection, the Berwald connection, and their associated torsion structures. The results are obtained
through successive transvections, contractions, and applications of key differential geometric relations,
yielding concise formulations that further characterize the internal structure of GR"-RE, spaces. These
findings not only enrich the algebraic structure of such manifolds but also provide a foundation for
investigating more complex geometric behaviors in advanced Finsler geometry.
Taking h- covariant differentiation of the formula (1.15b) with respectto x! in the sense of Cartan and
transvecting (1.15b) by the associate tensor g’P of the metric tensor Jjp » using (1.6c), (1.16a), (1.16d)
and (1.4a), we get
(3.1) (Ciz; Hiy + 977 Cin Hi; + 9’P Cixs Hj, )u = _thku - gijihkjll - gijikjhll -
Transvecting (3.1) by y*, using (1.6b), (1.16a), (1.18c), (1.4b) and (1.4a), we get
(3-2) H;I;ku = —(9’" Hypeju + 97° Hye jrr) -
Thus, we conclude Theorem 3.1
Theorem 3.1. In a generalized R"-recurrent Finsler space GR"-RE,, the following identities (3.1) and
(3.2) hold.
Using (1.16b) and (1.16a) in the identity (1.15b), we get
(B3)  GgrjRink + grnRixj + 9rkRijn + Cijs Hiy + Cins Higj + Cis Hj = 0
Now, transvecting (3.3) by y ¢, using (1.16a) and (1.4b), we get
9rj Hpie + Grn Hiej + Gric Hip, =

Transvecting the above equation by y™ , using (1.2a), we get
(34)  yjHp + yuHy; + vieHjp, =
By using (1.14b), the equation (3.4) yields to
(3.5) Hy jie + Hynj + Hign = 0
Transvecting (3.4) by y" , using (1.13a) and (1.2a), we get .
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grj HIC = Irk er
Transvecting the above equation by y™ , using (1.2a), we get
(3.6) ¥y Hg =y Hj
Consequently, the findings above lead to the formulation of the following theorem
Theorem 3.2. In a generalized R"-recurrent Finsler space GR"-RE,, the torsion tensor H}, satisfies
the following cyclic and symmetry identities in (3.4), (3.5), and (3.6).
Using (1.16a) in the identity (1.15a), we get
(3.7) Rijiin + Rinjik + Rikn)j + Hien Pijs + Hjjy Pips + Hpj Pijes = 0
In view of the condition (2.1), the identity (3.7), may be written as
(38)  AnRlj + ARl + A Rhy + pn(8kgi; — 87 gue) + 1 (87 gin — 61.9:5)
1 1
+ u;(8h ik — Ok gin) + th(RIC, 9ij — R gix ) + Z)’k(RjTgih — Ry, gij)
1
+2vi(Rh 9 — R Gin) + (Hiy Pl + Hi Pl + HiiPhs) = 0
Transvecting (3.8) by y !, using (1.16a), (1.2a) and (1.8c), we get
(3.9) AnHjy + AcHpj + AiHpg, + un (67 y; — 5jryk) + .Uk(5jr}’h —&hy;)
1 1
+ 1 (8hyie = 8% ) + S vn(Riy; — Ri i) + 5 vi(Rfyn — R ;)
+37; (R yie = Ry yn) + (Higy Pl + Hi P + Hi Pi) = 0
Transvecting (3.9) by y/, using (1.13a), (1.2b), (1.1) and (1.8b), we get
(3.10)  AnHi — AHp, + A Hiy + up (S5 F? =y y7) + e (n y™ — 61, F?)
1 i 1 i
+u (8F v = 8k yn) +vn(REF? = Riyie y7) + ViR yny/ — RE F?)
++y (Rhyi — RLyn) + (H} P — H3 Pi) =0,
where 4;y/ =24, y;y/ =y and py/ =p .
These derivations lead us to assert the following
Theorem 3.3. In a generalized R"-recurrent Finsler space GR"-RE,, the curvature tensor and the
torsion tensor satisfy the following identities (3.9) and (3.10).
Further, transvecting (3.9) and (3.10) by the vector y, , using (1.14c), (1.1),(1.13b) and (1.2b), such
that y,. # 0 , we get
(3.11) yh(RIZ yi — R vk ) + Yk(RjTYh — Rpy; ) +v; (RL Yk — Rt yn)
+ 4(Hin P, + i Pls + Hj Pis) = 0
and
312)  +yu(REF? — Ry y’) +vi(RIyny’ — RR F?)
+¥ (Rh i = Rl yn) + 4H; P — 4H{ Py = 0 .
Respectively. Thus, we conclude
Theorem 3.4. In the generalized R"-recurrent Finsler space GR"-RE,, the identity given by equation
(3.11) holds valid and reflects an intrinsic geometric property of the space.
Theorem 3.5 In the generalized R"-recurrent Finsler space GR"-RE,, the relation expressed in
equation (3.12) is satisfied, confirming the compatibility conditions between the curvature tensors and
the recurrence structure.
Transvecting (3.8), (3.9) and (3.10) by the metric tensor g,.,, , using (1.16b), (1.1), (1.9b), (1.14b),
(1.9a) and (1.2a), we get
(3.13)  Ap Rimjk + A Rimnj + 4 Rimicn + tn (Gkm 9ij — Gjm Girc )
+ Uy (gjm 9in — 9nm 9ij ) + u;(Gnhm ik — Jim Gin)
1 1
+ ~Vu(Rk 9ij = R Gir) Grm + V(R gin — R}, 93 ) Grm
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1
+ZYj(R;'l Jix — Rk 9in ) Grm + (Hzih Pinjs + Hy Pinns + Hp;j Pimks) =0,

(3.14) Ay Hipmy + Ak Hyj + 4 Hygp + i]/h (REy; — RI'Yi) rm
+ <V (R'Yi = REY; ) Grm + 2V (R Vi = R VA Grm
+(Hl§h ijs + jSk Ppms + H}ij Pkms) =0 ,

and

(315) Irm (Ah HI: _lk H;; +/1H1:h) + Up (gkm F? — Yk ym)

+ tte U Y = Gnm F2) + 1 Grom Yie = Gom V) + 5 Vi (REF? = RTYY) G
+2 Ve (RIyny” = Ry F?) Gy + 5V (RE Yie = Ri V) Grm
+(Hi Ppms — Hpy Pems) =0

These derivations lead us to assert the following

Theorem 3.6. In the generalized R"-recurrent Finsler manifold GR"-RE,, the identities represented by

equations (3.13), (3.14), and (3.15) are all valid. These relations result from the transvection of

previously derived fundamental identities by the metric tensor and illustrate the deep interdependence
between the curvature tensors, torsion tensors, and the structure coefficients of the Finsler space.

4. Conclusions

In this paper, we have introduced and systematically studied a new class of Finsler spaces,
denoted by GR"-RE,, characterized by a generalized recurrence condition involving Cartan’s third
curvature tensor and three non-zero covariant vector fields. We demonstrated the equivalence between
multiple formulations of the generalized recurrence condition through transvection and contraction
operations. Our investigation revealed that essential geometric objects such as the Ricci tensor,
deviation tensor, curvature vector, and scalar curvature are inherently non-vanishing in this class of
spaces, highlighting a rigid and rich structure compared to classical recurrent spaces. Furthermore, we
derived and verified a set of fundamental identities involving curvature and torsion tensors that
enhance the theoretical foundation of these spaces.

The results not only generalize existing concepts in Finsler geometry but also offer a broader

framework for further explorations. Potential future work includes the study of such generalized

recurrent structures under different connections, applications in physical models, and the development
of invariant properties under geometric transformations.
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