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Abstract: This paper investigates the properties and behaviour of generalized BP-recurrent
Finsler spaces (GBP-RF,) with an emphasis on the covariant derivatives of Weyl's projective
tensors, which include torsion, curvature, and deviation tensors. We define a GBP-recurrent
space as a Finsler space where the second curvature tensor satisfies a specific recurrence
condition involving non-zero covariant vector fields. Through a series of mathematical
derivations, the paper explores the equivalence of different characterizations of the GAP-
recurrent space, proving that the torsion tensor, its associate tensor, the P-Ricci tensor, and the
curvature vector are non-vanishing. Further, we analyze the relationship between the covariant
vector fields A, , upand y,, showing their dependence or independence on the direction
argument. The study also includes the application of Berwald’s covariant derivative to the
projective curvature tensor, concluding that these tensors exhibit generalized recurrence under
certain conditions. The results are presented in a series of theorems that contribute to the deeper
understanding of the geometric structure of GBP-RF,, spaces.

Keywords: Berwald's second curvature tensor jikh , Weyl's Projective Tensors jl}(h , GBP-RF,
space, Torsion tensor, Finsler space.

1. Introduction

Finsler geometry, which generalizes Riemannian geometry, has been a subject of extensive
study due to its ability to model a broader range of geometric spaces. A key aspect of Finsler
geometry involves the curvature properties of spaces, which can be characterized using various
curvature tensors. In this paper, we focus on generalized BP-recurrent Finsler spaces (GBP-RF,), a
class of Finsler spaces defined by a specific recurrence condition on the second curvature tensor.
The condition links the curvature tensor with non-zero covariant vector fields, resulting in a
generalized form of recurrence, which is the core of our study.
The motivation behind this work stems from the need to explore the deeper geometric and analytic

properties of these spaces, particularly the behavior of Weyl's projective tensors, which are crucial
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for understanding the curvature, torsion, and deviation in the context of Finsler geometry. By
analyzing these tensors and their covariant derivatives, we aim to develop a set of characterization
results for the GBP-RF,, spaces, offering new insights into their structure and behavior.

Through a series of detailed calculations, this paper establishes several fundamental theorems
concerning the non-vanishing nature of key geometric quantities, the dependence of covariant
vector fields on the direction argument, and the recurrence properties of the projective curvature
tensors. These findings contribute to the broader understanding of the geometric properties of
Finsler spaces and have potential applications in areas such as gravitational theory and advanced
differential geometry.

The structure of the paper is as follows: we begin by defining the concept of a generalized BP-
recurrent Finsler space and derive the necessary conditions for such a space to exist. We then
present a series of theorems that characterize the non-vanishing nature of the torsion tensor, P-
Ricci tensor, and curvature vector, as well as the dependence of the covariant vector fields 4, ,
ue and y, on the direction argument. Finally, we discuss the covariant derivatives of Weyl's
projective tensors, showing their generalized recurrence under certain conditions.

In the field of Finsler geometry, significant strides have been made over the years in understanding
the behaviour and properties of curvature tensors and their recurrence in various spaces. Numerous
studies have explored generalized recurrent Finsler spaces, providing valuable insights into their
geometrical structures.

Ahsan and Ali (2014) presented an in-depth analysis of the W-curvature tensor, contributing to the
broader understanding of curvature in Finsler spaces. This work laid a foundational framework for
subsequent studies on recurrent and generalized recurrent Finsler spaces.

Awed (2017) focused on the study of generalized P*h-recurrent Finsler spaces, delving into the
recurrence properties of such spaces, a crucial aspect for understanding the stability and behavior
of curvature tensors under different conditions. This dissertation provided essential insights into
how curvature tensors interact with the structure of Finsler spaces.

AL-Qashbari et al. (2024) further advanced the study of curvature tensors in recurrent Finsler
spaces, investigating R-projective curvature tensors. Their work provided a comprehensive
understanding of the interrelations of these tensors, which has been crucial for the development of
generalized Finsler spaces. In a similar vein, AL-Qashbari, Abdallah, and Al-ssallal (2024)
extended these concepts by introducing higher-order generalizations, refining the characterization
of recurrent Finsler structures through the use of special curvature tensors.

Another significant contribution came from AL-Qashbari and Al-ssallal (2024), who utilized
Berwald’s and Cartan’s higher-order derivatives to study curvature tensors in Finsler space,

offering new methods for analyzing the geometrical properties of these spaces. Similarly, their
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work on decomposing Weyl's curvature tensor using Berwald's derivatives (AL-Qashbari, Haoues,
and Al-ssallal, 2024) provided further understanding of the relationship between curvature tensors
and their transformation properties.

The importance of higher-order recurrence and its applications was emphasized in several works,
including AL-Qashbari’s (2020) exploration of recurrence decompositions in Finsler space and his
study of generalized curvature tensors in B-recurrent Finsler spaces. These studies have laid the
groundwork for understanding the recurrence behavior of curvature tensors in complex
geometrical structures.

Additionally, studies on specific curvature tensors, such as the work by Ghadle et al. (2024) on
generalized BP-recurrent and birecurrent Finsler spaces, and Opondo (2021) on projective
curvature tensors in bi-recurrent Finsler spaces, have further enriched the existing literature by
providing detailed investigations into these specialized spaces. These studies provide a deeper
understanding of how different types of curvature behave under transformation, which is essential
for the generalization of Finsler spaces. The broader implications of these studies extend to various
fields, including differential geometry, applied mathematics, and theoretical physics, where the
properties of curvature tensors play a fundamental role in the analysis of spacetime, fluid
dynamics, and other complex systems. The continued research on generalized recurrent Finsler
spaces is essential for advancing our understanding of geometric structures and their applications
in both theoretical and practical contexts.

The metric tensor g;; and the associate metric tensor g i are covariant constant with respect to h-

covariant derivative, i.e.

. 1 if i=k
o olk = 5k = ’
(1.2) gij g/ =6 {0 if i+k

The covariant derivative of the vectors y ! and y; , vanish identically, i. e.

(1.3) Byy'=0.

(14) a) y;y/=F%and b) g;= 0;y; = 0y

The vectors y; and g;; also satisfy the following relation

(15) a) yi=g;;(xy)y’ , b) Bry' =0 and ¢) Brg;; = —-2y" B, Ciji. -
The associate curvature tensor P;j,, of the curvature tensor Pjikh is given by

(1.6)  Pijkn = gir Pjkn

The P- Ricci tensor Pj;, the curvature scalar P and the deviation tensor Pji are given by
(1.7) a) Py =Py , b) Piy=P, and ¢) P/ =P

The curvature tensor P}, satisfies the relations
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(1.8)  gir Pin = Prin
The associate tensor th of the curvature tensor P;jyy, is given by
(1.9) Pl = 8" Pijin
The h-covariant derivative, defined above commute with the partial differentiation with respect to
y/J according to
(1.10) a) 6,-(X|ik) — (ajxi)lk =Xx"(9;T3%) — (0,X ) P, where
b) P = (9;T3ic) ¥" = T y"
The hv-curvature tensor th is positively homogeneous of degree zero in y‘and satisfies the
relations
(1.11) P'ikh J’j = F;lk]i'kyj = Plih = Clih|ryr )
(112) yf =0
The tensor P;; — Pj; is given by
(1.13) Pijpn gt =P — P;; .
Due to homogeneity of I“Jkl in y! the connection parameter ij"ki satisfy
(1.14) 0,Tjiy*=0 .
The projective curvature tensor ﬁch is known as ( Wely’s projective curvature tensor ), the
projective torsion tensor j‘}( is known as ( Wely’s torsion tensor ) and the projective deviation

tensor Wji is known as ( Wely’s deviation tensor ) are defined by

: . 25t 2yt 4 si .
(115) jlkh = Hjlkh (1) H[hk] (n+1) a]H[kh] + _(nzfl) (Tl H]h + Hh] + yrathr)

(2 1)(nHk+Hk]+y aHkr) )

(1.16) W, = H}; S +1)H,k 1+2{53 1)(nHk Y Hir)

i i i_
(L17) W = Hf = H §} = =

(0.H] —0;H) y* , respectively.
The tensors jl}ch, jl}( and Wj are satisfying the following identities
(1.18) @) Wi,y =W, and b) Wiy =W .
The projective curvature tensor th is skew-symmetric in its indices k and h.
The Cartan’s third curvature tensor R! ikn » and the R-Ricci tensor Ry in sense of Cartan,
respectively, given by
(1.19) @) Rjup = Tnix + (T3 )Gh + Chn(GI — G GE) + Ty T — k /R,
b) Rjikhyj=H1ih , € Ryy/=H, , d) Rypy*=R; and e) }ki = Rji,
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Berwald curvature tensor jikh and h(v)-torsion tensor H., form the components of tensors are
defined as follow

(1.20) @) Hjyp = 0;GEp + GinGl; + Gly; Gy — h/k

and b) Hi, = 0,G.+ Gl CL, — h/k

They are also related by

(1.21) @) Hjny’ =Hi, . b) Hjy, = 0;Hi, and c) Hjy = 0; Hj

These tensors were constructed initially by means of the tensor H} , called the deviation tensor,
given by

(1.22) @) H =20, G'—0,GLy" +2Gi,G* — G¢ G; ,where b) 0,G = G}, .

In view of Euler’s theorem on homogeneous functions and by contracting the indices i and h

in (1.21) and (1.22), we have the following:
(1.23) a) Hjyy’ =Hi , b) gpH) =Hpix and ¢) Hy'=(m—-1DH .

2. A Study on the Properties and Behavior of Weyl’s Projective Tensors
in GBP-Recurrent Finsler Spaces

In recent years, the study of Finsler geometry has seen substantial developments, particularly
in understanding the behavior and properties of curvature tensors and their recurrence in
generalized Finsler spaces. One significant area of research focuses on Weyl's projective tensors,
which play a crucial role in describing the curvature structure of Finsler spaces. These tensors are
instrumental in analyzing the geometrical properties of GPP-recurrent Finsler spaces, which
represent a generalized class of spaces characterized by specific recurrence conditions.
Recent works, including studies by Ahsan and Ali (2014), Awed (2017), and AL-Qashbari et al.
(2024), have highlighted the importance of projective tensors and their interactions with curvature
tensors in recurrent Finsler spaces. Specifically, these studies explore the recurrence behavior of
these tensors and their dependence on various geometric parameters. Additionally, AL-Qashbari's
investigations on the higher-order derivatives of curvature tensors, as well as decompositions of
Weyl’s curvature tensor, provide valuable insights into the structural complexity of such spaces.
This paper aims to contribute to the existing literature by providing a detailed analysis of Weyl's
projective tensors in the context of GBP-recurrent Finsler spaces, emphasizing their recurrence
properties and the role they play in the overall curvature behavior of these spaces. Through this
study, we seek to deepen the understanding of how these tensors influence the geometry of
generalized Finsler spaces and their broader applications in differential geometry and theoretical
physics. Let us consider an n-dimensional Finsler space F,

Definition 2.1. A Finsler space F, whose Berwald's second curvature tensor, P}kh satisfies the

following condition.
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(21)  BePfen = AePfin + 1e(8k9jn — Shgjic) + %W(Pril gk —Pigin)  Pln #0
where A, , u, and y, are non-zero covariant vector fields. We shall called it a generalized SP-
recurrent space and the tensor whch satisfies the above condition will be called a generalized
recurrent tensor .
We shall denote such space briefly by GBP- RF,, .
Remark 2.1. The condition B, Pfy, = A¢Pjn . Pjn # 0 , looks as a particular case of the
condition (2.1) when u, = 0.
Now, let us consider a Finsler space F, whichis GBP- RF, .

Transvecting the condition (2.1) by g, , using (1.1a) and (1.6), we get

(22)  BePimin = 2ePimin + te(GmjGkn — Gmijn) + iVe(PriL ik = Pk 9jn)9im

Conversely, by using (1.1b), (1.9) and (1.2), the tranvection of the condition (2.2) by g‘™ yields
(2.1). Thus the condition (2.1) is equivalent to the condition (2.2). Therefore GBP- RF,, may be
characterized by the condition (2.2).

Theorem 2.1. The space GSP-RFE, may be characterized by the condition (2.2).

Transvecting the condition (2.1) by y/ , using (1.3), (1.11) and (1.5), we get

(23)  Be Pin = ArPin + te(8ic v — 85 yn) + iy{’(Pfil Yi = Pivn)

Further, transvecting the condition (2.3) by g;; , using (1.1a) and (1.8), we get

(24) B Pixn = Ao Pixn + tte( Gjn i — Gjie yn ) + iyt’(PiiLyk — Plyn) gij

Contracting the indices i and h in the condition (2.1), using (1.7a), we get

(25) PPy =P+ (m—1) up gj + iyf(P;;, Vi — PLyn) 9ij

Contracting the indices i and h in the condition (2.3) using (1.7b) and (1.7c), we get

(26) BePre=2 P+ (n—1) ppyy + i)/e(P i = Piyi)

The equations (2.3), (2.4), (2.5) and ( 2.6) show that the (v)hv-torsion tensor P}, , its associate
tensor Pjy, , the P-Ricci tensor P, and the curvature vector Py , respectively, can't vanish. Since
the vanishing of any one of them would imply the vanishing of the covariant vector field u, i.e.
up = 0, contradiction.

Therefore, we can conclude the following theorem

Theorem 2.2. In the context of GBP-RF,, , the (v)hv-torsion tensor P, , its associated tensor Pih
the P-Ricci tensor Py, and the curvature vector Py are all non-vanishing.

By transvecting condition (2.2) with g*", and utilizing equations (1.1b), (1.2), and (1.13), we
obtain the following result:

2.7 Be(Pim — Pmj) = 2e(Pim — Pmj) -
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Therefore, we can conclude the following theorem
Theorem 2.3. In the context of GBP-RE, , the tensor (P;,, — P,,;) exhibits recurrent behaviour.
By partially differentiating equation (2.6) with respect to y/ and applying equation (1.4b), we
obtain the following result.
2.8)  0;(BePi) = (0j20) Prc + 20(0;P) + (n — 1) (B;10) yie + (n = 1) ptp g

+i(5ﬂ/e)(P i = Peyi) + iw(P gjx = Pegji) -
Utilizing the commutative formula presented in equation (1.10a) for the tensor Py, we derive the

expression given below.
0;(BePr) — B2 (9;P) = P-0;Typ — (0,Py) P,
+%(aﬂf€)(P vk — PLyi) + iVe(P gjix —PLgji) -
Substituting equation (2.8) into this result, we arrive at the subsequent equation.
(2.9)  B(9;Py) — B-0;Typ — (0, Py) Pjp = (8; Ae) Py + A, 0P + (n — 1)(8;140) Y
+(n— Dy gji +%(aj}’£)(P v — PLyi) + %W(P gjix —PLgji) -
If the tensor 0;Py satisfies the condition:
(2.10) B,(8;Px) = (0 Ap)Pk + (N — 1) po gjic -
then, by applying equation (2.10) into equation (2.9), we deduce that the non-zero covariant vector

field u, is dependent on the direction argument if and only if the following condition holds:
(2.11) (9 20)Pe + (n — 1) (@jp0) yi = — B-9; T — (0, Pi) Py + (n — Do g
+i(ajV€)(P Ve — PLyi) + %W(P gik — PLgji) -
Transvecting the condition (2.11) by y* , using (1.4a), (1.10a) and (1.4b), we get
(2.12) (0; 2p)Pry* + (n— 1)(9pe) F? = — 0,(P ¥") (= Dy y;
+5(0ve) (P F2 = PLy*y;) +5ve(Py; — PLy*g;) -
Now, if P, y* = 0, then the equation (2.12), becomes as

(n — 1)(9ue) F2 + (n = Dty + 7 (870) (P F2) +7v,(Py;) = 0

HeYj
Fz '

i.e. the non-zero

In the above equation, we assume (n # land F # 0), then d;u, = —

covariant vector field p, is dependent of the direction argument, if and only if

(8jv2)(PF?) = y,(Py;) .

Thus, we may conclude

Theorem 2.4. In the context of GBP-RF, , the non-zero covariant vector field p, is direction-
dependent on y’ if and only if the condition (8;y,)(PF?) = y,(Py;) holds, provided that B y* =
0 and equation (2.10) is satisfied.
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On the other hand, if P, y* # 0, then equation (2.12) reveals the following relationship:
(2.13) (8; A,)Py* + (n—1)(8;up) F2 = 0
if and only if
(2.14) — 3Py )Pf; + (n — Do y; + 5 (9v2) (P F? = PLy*y;) +vo(Py; — Piy*g;) = 0 .
If (2.14) holds, then the equation (2.13), implies that
(2.15) Ojup = —{(8; 24) Py y* } / (n—1)F?} ,where (P,y*#0, n*1and F#0).
by using (2.15), we have if 9;4, = 0, then 0d;u, = 0. Conversely, if d;u, = 0, then 9;4, =0
since (Pey*#0, n#1land F#0).
Thus, we can conclude the following:
Theorem 2.5. In the context of GSP-RE,, the covariant vector field p, is independent of the
direction argument y/ if and only if the covariant vector field 2, is independent of the direction
argument y [ provided P, y* # 0, (2.10) and (2.14) hold ].
Transvecting the condition (2.9) by y/, using Euler's theorem on homogeneous functions (1.3),
(1.14), (1.12) and (1.5), we get
(2.16) (0, 20)Pey’ + (n— 1) (@jpe) vy’ + (n — 1) ppy = 0
+2(8ve) (P vk — PLy:)y) +=ve(Pyic — PLyy) -
Now , if (8;4,) y/ = 0, then from (2.16) , we get
(217) (n— D@jue)yiy’ + (= Dpge yie + = (7e) (Pyic — PEyi)y? +7ve(Pye — Ply) = 0.
Spouse n = 4, then the equation (2.17), implies that
@jte) yiy’ = — we yi + 1—12 (070) (Pyi — Peyi)y’ + 1—12)’4(1) Yie = Piyi) .
Thus, we can conclude the following:

Theorem 2.6. In the context of GBP-RF, , the following equation holds:
@1e) iy’ = — e yie + = (8v2) (Pyic = PLy: )y’ + = ve(P yie — PLyi)
if and only if the condition (9; A,) y/ = 0 is satisfied.
For a Riemannian space V, , the projective curvature tensor jikh (Cartan's second curvature tensor)
and the divergence of the W-tensor, in terms of the divergence of the projective curvature tensor,
can be expressed as follows:
(2.18) Wiy = Phn + % (8L Rin—Rhgji) -
Taking covariant derivative of first order (Berwald’s covariant differential operator) of (2.18) with
respectto x™ , we get
(2.19) BuWjin = BmPlin + é Bm( 8k Rin = Rh 9 )
Using the condition (2.1) in (2.19), we get
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BaWjien = Am Plien + 1 (8% gjic — Sk gjn) + i]/m(Pfil gix = Pigjn)

+% B Sk Rjn — Rh gjic) -
In view of equation (2.18) and by using (1.5c), the above equation can be written as
(2.20) ByuWin = AW + (8% gji — 6L gjn ) + iym(P}ilgjk —PLgjn)

— = An( 8L Rin = Ri ) + 5 85 BuRin —5 (BmRE ) gjic += Rh ¥" By e -
This, shows that

BuWiien = AmWiien + ttm (8% g = 65 gjn) + 3 ¥m(Phgjx — P gm)
if and only if
(221) 8 BmRjn — Am( 8t Rjn — Rh g ) = (BmR}) gjic + 2 Rhy ¥" Bn Cigm = 0
Therefore, using the above assumptions and mathematical analysis results the following

Thus, we can conclude the following:

Theorem 2.7. In the context of GSP-RE,, ( for n = 4 ), Berwald’s covariant derivative of the
first order for the Weyl’s projective curvature tensor jl}(h is generalized recurrent if and only if
the condition (2.21) holds.
Transvecting (2.20) by v/ , using (1.5¢), (1.18a), (1.1a), (1.19¢) and (1.4c), yields
(2.22) BnWiin = AWy + ttm (8% yie = 8k yn ) + 3 Ym (P yic = Pivn)
_§ Am( 8k Hp — Ry Hy ) + § 8k Bm Hn —i (BmRL) Vi -
This, shows that
(223)  BnWin = AmWiin + ttm( 8% i = S ya) + iym(Pfil Yk = Pivn)
if and only if
(2.24) 8. By Hp — An( 6L Hy — R H ) — (BRE) v =0
Therefore, it is concluded the following theorem
Theorem 2.8. In the context of GBP-RE,, ( for n = 4 ), Berwald’s covariant derivative of the

first order for Weyl’s projective torsion tensor W, is given by the equation (2.23) if and only if
(2.24) holds.

Transvecting (2.22) by y* , using (1.5c), (1.18b), (1.1b), (1.2) and (1.23c), we get
BuWi = AW} + (85 F2 =y y') + 5 vim(PE F? = PLy, y")
—= Am(Hyy' = (= 1D RL H) + % y' By Hy — 5 (BwR} ) F?

This, shows that

(2.25) BpWii = AWy + 1t (8% F2 = yn ¥' ) + 5 ¥m(PL F2 = Piyn y¥) |

if and only if

Generalized BP-Recurrent Finsler Spaces: Characterization..... Husien and Al-Qashbari
868



JEF/Journal of Education Faculties o Gmeler — By LK Y2

Volume 18, Issue (2), 2024 p 2024 (2) >adl 18 A

(226)  y'BpH,— An(Hoy'—(m—1)R,H)— (BLRL)F2=0

Thus, the following is derived.

Theorem 2.9. In the context of GBP-RE,, ( for n = 4 ), Berwald’s covariant derivative of the
first order for Weyl’s projective deviation tensor Wy, is given by the equation (2.25) if and only if
(2.26) holds.

3. Conclusions

In this study, we thoroughly investigated the properties of generalized BP-recurrent Finsler spaces

(GBP-RF,,). The analysis focused on the covariant derivatives of Weyl's projective tensors, which

are composed of the torsion tensor, curvature tensor, and deviation tensor.

Key conclusions include:

1. Non-Vanishing Tensors: In GBP-RF,, spaces, the torsion tensor, its associated tensor, the P-
Ricci tensor, and the curvature vector cannot vanish. The non-vanishing nature of these tensors
is essential for the recurrence behavior of the space.

2. Characterization of the GBP-RF_n Space: The space GBP-RF, can be characterized by
specific recurrence conditions on the curvature tensors and the associated covariant vector
fields. The equivalence between different characterizations (such as conditions (2.1) and (2.2))
further solidifies the understanding of this geometric structure.

3. Dependence of Covariant Vector Fields: We demonstrated that the non-zero covariant vector
field u, depends on the direction argument y’/ under certain conditions. Specifically, u, is
direction-dependent if and only if specific conditions involving the covariant derivative of
y, and the curvature tensors are satisfied.

4. Recurrent Behavior of the Tensors: The study shows that the transvection conditions for the
curvature tensors lead to recurrent behaviors for both the projective curvature and torsion
tensors under specific conditions.

5. Berwald's Covariant Derivative: The application of Berwald's covariant derivative to Weyl's
projective tensors reveals their generalized recurrence under certain conditions. The analysis of
the covariant derivatives also provides insight into how these tensors behave under
transformation, contributing to a deeper understanding of the geometric properties of GBP-
RF,, spaces.

6. Mathematical Theorems: Several theorems were derived to support these findings, each
contributing to the foundational understanding of the geometric structure and recurrence
behavior of these spaces. These results not only provide valuable theoretical insights but also
pave the way for future applications in advanced geometric and topological studies.

Generalized BP-Recurrent Finsler Spaces: Characterization..... Husien and Al-Qashbari
869



JEF/Journal of Education Faculties o6 dasle — Ayl LK Y2

Volume 18, Issue (2), 2024 £ 2024 ((2) 0l 18 A

In conclusion, this paper establishes the crucial properties and recurrence conditions for
generalized PP-recurrent Finsler spaces, offering a robust framework for understanding the
geometric structure and behavior of these spaces. The results can be extended to further studies in

differential geometry and applied mathematical physics.

4. Recommendations

The authors emphasize the importance of ongoing research and development in Finsler
geometry, given its significant potential applications across various scientific disciplines. Further
investigation into its properties and structures is crucial for advancing both theoretical

understanding and practical implementations in related fields.
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