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Abstract: In this paper, we present a new model of Kadomtsev-Petviashvili-Benjamin-Bona-
Mahony (KP-BBM) equation, namely, potential of (KP-BBM), and potential of the combined
"Korteweg-de Vries and negative-order Korteweg-de Vries" with "Calogero-Bogoyavlenskii
Schiff and negative-order Calogero-Bogoyavlenskii Schiff equation”, namely, potential
c(KdV-nKdV with CBS-nCBS). We apply the extended generalized Riccati equation mapping
method to solve the new models. Exact travelling wave solutions are obtained and expressed
in terms of hyperbolic functions, trigonometric functions and rational functions.

Keywords: potential (KP-BBM) equation -potential c(KdV-nKdV with CBS-nCBS) equation-
Accurate solutions and the method for plotting the extended generalized Riccati equation.

Introduction: In recent years, directly searching for exact solutions of nonlinear partial
differential equations (NLPDEs) has become more and more attractive field in different
branches of physics and applied mathematics. These equations appear in condensed matter
,solid state physics, fluid mechanics, chemical kinetics, plasma physics, nonlinear optics,
propagation of fluxions in Josephson junctions, theory of turbulence, ocean dynamics,
biophysics and star formation and many others.
In fact the computer symbolic system such as maple or mathematica allow us to preform
complicated and tedious calculations. Many algorithms have been proposed to find exact
solutions for (NLPDES) using these programs.
In order to get exact solutions directly, many powerful methods have been introduced such as
the Hirota’s direct method [3,11], (G'/G,1/G) expansion method [1], the tanh- coth method [16],
the Jacobi elliptic function expansion method [6],
A Table lookup method [10], the exp(-¢(n ))-expansion method [2], the Backlund
transformation method [8], inverse scattering method [5], mapping method [12], proposed
method [14] and homogenous balance method [19].

Recently, Shun-dong Zhu [20], introduced a new approach, namely, the extended generalized
Riccati equation mapping method, for a reliable treatment of the nonlinear wave equations. The
useful extended generalized Riccati equation mapping method is then widely used by many

authors [4,7,9,13].
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Description of the Extended Generalized Riccati Equation Mapping Method
Consider the general nonlinear partial differential equation (NLPDE), say, in two variables
P (U, Uy, Ug, Uy Uy ) = 0. 1)
Eq. (1) can be solved by using the following steps:
Step 1: Use the wave variable & = u(x — ct), where p is the wave number and c is the wave
speed to change the Eq.(1) into
Q(u,u',u",..) =0, (2
where Eq. (2) is the nonlinear ordinary differential equation (NLODE) and ' denotes to the
differentiation with respect to &.
Step 2: We suppose that the solution of Eq. (2) has the form
u(e,t) =u@) = It_,a,(Q®) 3)
where the coefficients ai(L =0,1,2,..,n), are constants to be determined later, and Q=
Q(§) satisfies a nonlinear ordinary differential equation
Q'(®) =7 +pQ() +qQ% (&), (4)
where p, g and r are constants to be determined later .
The value of positive integer n is easy to find by balancing the highest order nonlinear terms
with the highest order derivative term appearing in Eq. (2).
Step 3: Substituting Eq. (3) along with Eq.(4) into Eq. (2) and collecting all the coefficients of
Qi(%), (i=0,1,2,...,n), then setting them to zero, yield a set of algebraic equation
Solutions to the resulting algebraic system are derived by using the extended generalized

Riccati equation mapping method with the aid of Maple.
Step 4: The solutions of Eq.(4), can be divided into four different families as follows :

Family 1: When p? —4qr <0 and pqg =0 or gr = 0, the solutions of Eq. (4) are

1. G(&) = i(—P + \/4qr — P? tan (—“l}qz_lﬂf)),

2. G(&) = ;—;<P + J4qr — PZ cot (—Wf))

3. 6@ = 3, (P -+ Vaar = P? (tan(Agr = P7) £ sec({/Aqr —P%))),
@ 0= o+ T o T )
5 G6(8) = f( 2P +J4qr — P2 <tan<—v4q:_PZ€ ) — cot (—‘/‘Lq:—_lﬂf»),

4qr—P?)(A*-B?)-Ay4qr—P? 4qr—P2
. G(f)_zi< p . JOar @B - aiar cos(/aqr E)>'

Asin(\[aqr-P%)+B
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7. G(¢) = L (-P _ J(4qr—pP2)(A2=B2)+A\[4qr—P2 cos( \/4qr—P2§) >'

2q Asin( mf)+3

where A and B are two non-zero real constants satisfies A- B> > 0.

( 4qr—p2 )
—2r cos > '3
8. G(&) = ,
r—p2 / r—P2
J4qr—p2 sin(#{)ﬂa cos( 4q2 ’ f)
( /4qr—P2 >
2r sin > '3
9. G(§&) = ,
/ r—pP2 r—p2
-p sin< 4q2 ’ E>+\/4-qr—P2 cos<LPE>

2

10. G _ -2r cos( ,/4qr—PZE)
) (f) a J4qr—p2 sin( \/4qr—P2§')+p cos(J4qr—sz)iJ4qr—P2 ’
11. ¢ _ 2r sin( mf)
L G@) = -p sin( \/4qr—P25)+ \J4qr—p2 cos( \/4qr—P2$)i Jaqr-p2?’
/ r—p2 f r—p2
4r sin< 4q4 F E)cos( 4q4 ’ f)
12. G(&) =

J4qr—P2 J4qr—P2 /4—qr—P2 .
—2psin< 7 $>cos< < + 2./4qr—P? cos? — —./4qr—pP2

Family 2: When p®—4gr >0 and pq =0 or gr =0, the solutions of Eq. (4) are

13. G(¢) = ;—;<P + /P? — 4qr tanh (—“szqrf))
14. G() = ;—;<P + /PZ — 4qr coth (—VPZZ_‘“’T 6))

15. G(¢&) = _—1<P + /P? — 4qr (tanh(,/P2 - 4qr€) + i sech(\/P? — 4qr€))),

q
16. G(&) = _—;<P +/PZ=4qr (coth(/PT=4qr¢) + csch({/PZ - 4qr$))),
17. G(&) = =2 2P + P2 — 4qr (tanh | L2 ¢ ) + coth (L2207 ¢) ) ),
q 4 4
1 (P2-4qr)(A2+B2)—A P2—4qr cosh(\/P2—4qrf)
18 G(f) B Z <_P + Asinh(1/P2—4qr§)+B ’
1 \ (P2-4qr)(B2—-A2)+A P2—4qr sinh(\/P2—4qr$)
19 G(f) B Z <_P - Acosh(w/P2—4-qrf)+B ’

where A and B are two non-zero real constants and satisfies B> A% > 0,
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P2—4qr
2r cosh > '3

20. G(§) = :
/ 2_4qr 2_agr
JP2—4qr sinh( ’ 24q é’)—p cosh< r 24q E)
</P2—4qr >
—2r sinh| > '3
21. G(§) = :
2_agr / 2_4qr
psinh( ’ 24q E>—11P2—4q7‘ cosh<¥$>
- B 2r cosh(«/Wf) = V1
’ (f) B JP2%-4qr sinh(,/P2—4qrf)—p cosh( \/P2—4qr$)ii\/P2—4—qr P EENVT
23 ¢ _ 2rsinh(\/P2—4-qrf)
L G@) = —psinh(JP2—4qr€)+JP2—4qrcosh(JP2—4qr$)i\/P2—4qr'
4r sinh< “P2_4qr$>cosh( ‘P2_4qr )
24.G(§) =

PZ-4qr P2—4qr P2—aqr .
-2p sinh< E)cosh(TE>+ 2./P%2—4qr cosh2<Tf —P2%-4qr

Family 3: When r =0 and pq =0, the solutions of Eqg. (4) becomes:

25. G(§) = q (k+cosh(p&)— sinh(pé))’

—p (cosh( p&)+ sinh( p&))
q (k+cosh(p&)+ sinh(pé))

26. G(¢) =

where k is an arbitrary constant.

Family 4: When r =p =0 and q = 0, the solutions of Eq. (4) becomes:

-1

27. 6(O) = =

where [ is an arbitrary constant.
The multiple exact special solutions of nonlinear partial differential equation (1) are obtained
by making use of Eg. (3) and the solutions of Eq. (4).
Exact Solutions for Potential c(KdV-nKdV with CBS-nCBS) Equation

We consider a combined Korteweg—de Vries and negative-order Korteweg—de Vries with
Calogero-Bogoyavlenskii Schiff and negative-order Calogero-Bogoyavlenskii Schiff equation
c(KdV-nKdV with CBS-nCBS) [17,18] as the form

Ve + Vyxy + Vgt + Vs + 4v(vy +v,) + 2v, 0, (vy +v,) + 6vv, = 0,v = v(x,y,0),(5), where

Ve + Vyyx + Vxxe + 60V, + 400, + 20,,0,' v, = 0, (6)
is the Korteweg—de Vries and negative-order Korteweg—de Vries (KdV-nKdV) equation [21],
and vy + Vyyr + Vayy + 400, + 4vvy, + 20,0, (v, + 1) = 0, (7)

is the Calogero-Bogoyavlenskii Schiff and negative-order Calogero-Bogoyavlenskii Schiff
(CBS-nCBS) equation [22].
The assumption v(x,y,t) = u,(x,y,t) transformed Eq. (5) to
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Ut + Uy + Unprxe + U + e (Uey + Ue) + 20 (1 + Ue) + U U, = 0, (8)
Eq. (8) is called a potential combined Korteweg—de Vries and negative-order Korteweg—de
Vries with Calogero-Bogoyavlenskii Schiff and negative-order Calogero-Bogoyavlenskii
Schiff equation of Eg. (5) and denoted by potential c¢(KdV-nKdV with CBS-nCBS).
substituting u(x,y,t) = u(¢), ¢ =A(x +y —ct) in Eq. (8) and integrating the resulting

equation, we find

—cu'(§) + 122 — u" (&) + 312 — (W' (©)’ = 0. 9)
Eg. (9) is nonlinear ordinary differential equation.
Balancing the highest order of the nonlinear term (u')? with the highest order derivative u""’
gives 2n + 2 =n+ 3 that gives n = 1. Now, we apply the extended generalized Riccati
equation mapping method to solve our equation.
Consequently, we get the original solutions as the follows:
Assume, the solution of Eq. (9) has the form

u(§) = ap +a, Q(5), (10)
where a4 and a, are constants.
By substituting Eqg. (10) in Eq. (9) and using Eq. (4), the left hand side is converted into
polynomials in Q¥(§),0 < i < 4, setting each coefficient of these resulted polynomials to zero,
we obtain a set of algebraic equations for ay, a4, C, p, g, r and A. Solving the resulting system

of algebraic equations with help Maple, we obtain

. 8rqA?
Casel:ay=ay,a; = -2qgA4,p=0,q=q,r=r,A=Ac= a1
Case2:ay=ay,a; = — ” ,p=p,q=q,r=0,/1=T,c=c.
Case3:ap=ap,a, = ” ,p=p,q=q,r=0,/’l:—T,c=c.

The above cases of values yields the following exact solutions of potential ¢(KdV-nKdV and
CBS-nCBS) equation using Eq.(10) and the solutions of Eq.(4) .
Exact traveling wave solution of Eq. (8) for Case 1 given by the following:

Family 1: p2 —4qr < 0 and pq # 0 or gr # 0 are
u (6, y,8) =ag — A (2 qr tan(ﬁf)), where & = 1 (x +y - 4::.1;1: t)'
u,(x,y,t) = ag + 1 (2 qr cot(ﬁf)),
Us (6,7, ) = ag — A (zﬁ (tan(2/qr¢) £ sec(zﬁg))),
Us 6(x,,8) = g + 2 (zﬁ (cot(2,/qré) + csc(zﬁg))),

u,(x,y,t) = a, —§<2W (tan (@E) — cot (@E))),
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(2T @B A cos2TTE)
us(x,y,8) = ap — 4 ( Asin(2yare)+B )

_ 2yF(JAZ=B7)+A cos(2yr)
uo(x,y,t) = ao + A( A sin(2y/qré)+B )’

where A and B are two non-zero real constant and satisfies A2 — B > 0.

—2rcos(qrg) )
2y7q sin(yqré)/)’

uio(x, y,t) = ag — 2q4 (

 a — 2q2 (2S0TTE
ull(X, v, t) = Qo ZC[ (ZMCOS(WE)),

_ _ —2r cos(2y/qré)
u1213(x,,t) = ap — 294 (zﬁsin(ZWf)il)'

_ _ 2r sin(2+/qré)
U115 (%Y, 1) = a0 — 2q (ZWCOS(ZWf)il)’

ar sin(@f) cos(@f)
ZW(ZCOSZ (@f)—l) .

u(x,y,t) = ag — ZCIA<

Family 2: p2 —4qr > 0 and pq # 0 or qr # 0 are
U, (x,y,6) = ag + 24 (2 —qr tanh(\/——qrf)), where & = 1 (x +y-— 423;11 t),
(%, y,t) = ao + 4 (2/=qr coth(y/=qr¢))
U1020(%, 7, £) = G + 4 (2 —qr (tanh(2/=qré) + sech(Z\/—_qrf))),
Upr22(X,y,8) = ag + A (2 —qr (coth(Z\/—_qrf) + CSCh(Z\/—_qrf))),

Uy3(x,y,t) = ag +§<2 —qr (tanh (@ f) + coth (@E))),

_ _ 2+/—qr+/ (A24+B2)—A cosh(2+/—qré&)
Uza(x,y,8) = ag — 4 ( A sinh(2y/=qré)+B )’
_ 24/=q7\/(B%2—A2)+A sinh(2+/—qr¢&)
uZS(x' Y t) = 0o+ /1( A cosh(2y/—qré)+B )'
where A and B are two non-zero real constant and satisfies B2 — 42 > 0.
_ _ 21 cosh(2+/—qré)
Uz6(x, ¥, 1) = ao — 294 (2\/—_qr sinh(z\/—_qrf))'
—2r sinh(2/=qré) )
2/=qr cosh(2v/=qr§)/’
N _ 271 cosh(2+/—qré)
Uzg20(%, Y, 1) = do — 292 (2\/—_qrsinh(2\/—_qrf)ii)'
_ _ 2 17 sinh(2/—qré)
us031(%,y,t) = ap — 2q4 (2\/—_qr cosh(Z\/—_qTf)il)'
4r sinh(@f) cosh(@f)
2\/—qr <Zcosh2 (‘?S)—l) .
Exact traveling wave solution of Eq. (8) for Case 2 given by the following:

Uy (X, y,t) = ag — 261/1(

uz, (x,y,t) = ag — 2q/1(

Family 1: p? —4qr <0 and pg # 0orqr # 0 :
p? —4qr « 0 sincer = 0, given that (p? p € R) < 0 means that is not true, i. € no
solution in this family.

Family 2: p2 — 4qr > 0 and pq # 0 or gr # 0 are:
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usz(x,y,t) =ag+ @ (1 + tanh (% 17)),
where n =x+y—ct, ¢ = /i , and c is arbitrary constant.

uzs(x,y,t) =ag+ ¢ (1 + coth (% n))

Uzs36(X, ¥, t) = ap + @ (1 + tanh(e n) * isech(e 1)),
Uz 3g(x,¥,t) =ap + ¢ (1 + coth(ep n) + csch(e n)),

Uzo(x, v, t) = ag +§ (2 + tanh (% 77) + coth (% n))

VAZ+BZ—-Acosh(p 1)
Asinh(p §)+B )'

VBZ—AZ+A sinh(p 1)
Acosh(e 1n)+B )

Ugo(X,¥,t) =ag — @ (‘1 +

U (x,y,t) =ap— ¢ (_1 -
where 4 and B are two non-zero real constant and satisfies B2 — A2 > 0. For i < 0, we get

Cc

Ug(x,y,t) =ag— (—i— tan(—%n)),where n=x+y—ct, u= [—.

c-2
Uyz(x,y,t) =ay+ 1 (i — cot (—g n)),

Usaas(x,Y,t) = ag — p (=i — tan(—u n) + sec(—p 1)),

Usea7(x, Y, 8) = ao + p (i — cot(—p ) + cse(—u 1)),

usg(x, v, t) = ay —% (—21’ — tan (—% 77) + cot (—% r))),

VA2-B2-Acos(—u 1)
Asin(—u n)+B !

Ugo(X,y,t) =ag— (‘i -

., VA2-BZ2+Acos(—u 1)

uso(x,y,t) =ap —u <_l t T asinCa B )

Where A and B are two non-zero real constant and satisfies A2 — B2 > 0.

Family 3: Whenr = 0 and gp # 0 are:

2ko
k+cosh(p n)-sinh(p 1)’
2 p(cosh(p m)+ sinh(e 1))
k+cosh(¢@ n)+ sinh(p n)

u51(x»y; t) =Aay +

usz(x»y;t) =AQap +

where n=x+y—ct, ¢ = [C__—‘; and c is arbitrary constant.

Exact traveling wave solution of Eq. (8) for Case 3 given by the following:

Family 1: p?2 —4qr <0 and pg #0orgqr # 0 :
p? —4qr « 0 sincer = 0, given that (p? p € R) < 0 means that is not true, i. € no
solution in this family.

Family 2: p? — 4qr > 0 and pq # 0 or gr # 0 are:
uss(x,y,t) =ap— @ (1 + tanh (—% n)),

where n =x+y—ct, ¢ = /i and c is arbitrary constant.

use(x,,1) = ap — ¢ (1 + coth (_% 77)),
Uss,s6(%,y,t) = ag — ¢ (1 + tanh(=¢ 1)  isech(~¢ n)),
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Us758(x,y,t) = ap — ¢ (1 + coth(—¢ n) £ csch(—¢ 1)),

Uso(x,y,t) = ag —% <2 + tanh (—% 77) + coth (—% 77))
VAZ+BZ—A cosh(—¢ 17))

Asinh(—¢ n)+B
VB2—A%2+Asinh(—¢@ 1)
Acosh(—¢@ n)+B )

u60(x,y, t) =0y + (p <_1 +

U1 (x,y,t) =ap+ @ (—1 -
where A and B are two non-zero real constant and satisfies B2 — A% > 0. For % < 0, we get

u

Ug, (X, y,t) =ag + 1 (—i— tan(; r,)),where n=x+y-—ct, u= .

Uz (X, ¥, t) =ag— (i — cot (% n)),

Ugaes(X, Y, t) = ag + u (=i — tan(u 1) £ sec(u 1)),
Ugpe7(X, Y, 1) = ag — U (i — cot(u n) + csc(u 77));

ugg(x, v, t) = ay +§ (—Zi — tan (% n) + cot (% n)),

_ VA2-B2-Acos(u n)
Asin(u n)+B !

_ . . VA2-BZ2+Acos(u n))
u70(ny't) - a0+ﬂ(_l+ Asin(u n)+B
where A and B are two non-zero real constant and satisfies A2 — B > 0.

Family 3: Whenr = 0 and gp # 0 are:
— _ 2ke
u71(x' Y t) = %o k+cosh(—¢ n)—sinh(-¢ 1)’
2 ¢(cosh(—¢ n)+ sinh(-¢ 7))
k+cosh(—¢ 1)+ sinh(—¢@ 1)

u69(x’yl t) =Qqo+u <_l

u72(nyrt) =ag —

where n=x+y—ct, ¢ = f% and c is arbitrary constant.

Exact Solutions for potential (KP-BBM ) Equation
We consider a Kadomtsev Petviashvili-Benjamin-Bona-Mahony equation [15] as the form:
Up + Uy + 20Uy — Blyye + ¥ 0, Uy, = 0,u = ulx,y,t). (11)
with «, f and y being arbitrary nonzero-constants.
The assumption v(x,y,t) = u,(x,y,t) transformed Eq. (11) to
Uyt + Vxx + 2QUxUxy + BUxxxt +¥Vyy =0, (12)
Eq. (12) is called a potential Kadomtsev Petviashvili-Benjamin-Bona-Mahony equation of
Eq.(11) and denoted by p(KP-BBM). Substituting v(x, y, t) = v(§),
& = Ax +y— wt) in Eq. (12) and integrating the resulting equation, we find

2
BwA?v"' (&) + ar(v'(©)) + (1 +y — w)v'(§) =0, (13)
Eqg. (13) is nonlinear ordinary differential equation. Balancing the highest order of the

nonlinear term (v")? with the highest order derivative v'"’ gives 2n + 2 = n + 3 that gives

n = 1. Now, we apply the extended

generalized Riccati equation mapping method to solve our equation. Consequently, we get the
original solutions as the follows:
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Assume, the solution of Eq. (13) has the form

v(§) = ap+a; Q(%), (14)

By substituting Eq. (14) in Eq. (13) and using Eq. (4),the left hand side is converted into
polynomials in Q*(§),0 < i < 4, setting each coefficient of these resulted polynomials to zero,
we obtain a set of algebraic equations for a,, a; , w, p, q, v and A. Solving the resulting system

of algebraic equations with help Maple, we obtain

Casel: ap=ap,aq = — 6qmw'P—0q_q'r_ 4[?30/)12(0 w=wl=4
. 6(1+y)qBA 14y
Case2: ag=ay,a, = m,p p.q=q,r O'wz_p;lzpz_l’lz’l'
) 3(1+y-w+BwA?p?) 1+y—w+BwA?p?
Case3:ayg=agy,a; = — py—) P = ,qzw,rzr,wzw,/lzl,

The above cases of values yields the following exact solutions of potential (KP-BBM)
equation using Eq.(14), and the solutions of Eq.(4) .

Exact traveling wave solution of Eq.(12) for Case 1 given by the following:

Family 1: p%? —4qr <0 and pq # 0 or gr # 0 are:

v, (x, y,t)—a0+— <\/—cot( ))
v34(x,y,t) = ag — Bw ( (tan(\/_ 77) + sec(\/_ T])))
vse(x,y,t) = ag + % (\/Z (cot(\/Z n) £ csc(vA n))),

o) = a0 22(8 (10n () - cor(£)))

vg(x,y,t) = ao = e (m A\/_cos(\/_n)),

Asin(VAn)+B

— gy + 20 ({EEET A Beos( )
vo(x,y,t) = ay + ( Asin(vVAn)+B ’

where A and B are two non-zero real constant and satisfies A2 — B2 > 0.
5
o)y (),
3/Bw (x/lﬂ/——w sin(gn) )
o))
Vi+y-w Cos(‘/Z—Kn)>
Si"(é—zﬂ)ﬂ ’
3,/Bw <\/1+V——w sin(‘/z_zn) >
C"S(gn)ﬂ ’
ag — 6y/Bw (Jlﬂ’_—w sin(\i—zn) cos(%?) ))

2cos? (@n)—l

v1,(x,y,t) = ay — .

3,/ Pw
V213X, Y, t) = ag + . (

V141506, y,t) = ag — .

v16(x) YF t) =

a
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Family 2: When p? — 4qr > 0 and pq # 0 or gr # 0 are:

we get the same solution as [vy, ..., v7], and

3ifw <1/¢(A2+BZ)—A @ cosh(ﬁn))

1717(95»3’, t) =0ap —

a A sinh(ﬁn)+B
3ifw (o (B2-A2)+A [ sinh(\/on) 1+y—
v18(x,y,t) = ag + law( Acosh(\/\/a_n)+3 2 ywhere n = (x +y — wt),¢ = _%

where A and B are two non-zero real constant and satisfies B> — 4% > 0.
we get the same solution as [v;, ..., V1]

Exact traveling wave solution of Eq.(12) for Case 2 given by the following:

Family 1: p2 —4qr <0 and pq #0orqr #0:
p? —4qr <« 0 sincer = 0, given that( p? p € R) < 0 means that is not true, i. € no
solution in this family.

Family 2: p2 —4qr > 0 and pq # 0 or qr # 0 are:

1+ 3(1+y)BA
vio(x,y,t) =ag —u (p + p tanh (g f)), where & = 1 (x +y+ mzpl’_l t) L= a(;/ﬂ?zﬁ-l) _

v20(x,y,6) = ag — t (p +p coth (25))
V212206 7,8) = ag — 1 (p +p (tanh(pé) + isech(p))),
V2324069, 8) = ag — it (p +p (coth(®§) £ csch(pf))),
V,5(x,9,t) = ap + % <2p +p (tanh (E f) — coth (ff))) ,
J(42+B%)-Ap cosh(pf))

P
V2s(x,y,1) = ap +u (—p + Asinh(pé)+B

_ p/(B2-AH)+Ap sinh(p{))
A cosh(pé)+B

where A and B are two non-zero real constant and satisfies B> — 4% > 0.

1727(95’3’: t) = Qyp—HU <_p

Family 3: Whenr =0and gp # O are:

B 2kp u
(k+cosh(p &)—sinh(p &))

2pu(cosh(p &)+ sinh(p §))
(k+cosh(p &)+ sinh(p §))

v30(x,t) = ag

v31(x,t) = ag —

,where § = A (x +y + 22— t), p= 2008

BA?p?-1 a(BA*p?-1y
Exact traveling wave solution of Eq.(12) for Case3 given by the following:

Family 1: p? — 4qr <0 and pq # 0 or gr # 0 are:

- i
(< -+ VBean (Zg) )wnere £ = a0r+y - 00, a=22

3wl

V30, y,t) = ag — .

v33(x, v, t) = a, +% <p + VA cot (\/Z—Zf)>

V3435(x, y,t) = ag — % (‘P +VA (tan(\/ZE) * sec(\/z.f))),
V3637(x, ¥, t) = ag + @ (p ++/A (cot(\/ZE) + csc(ﬂf))),
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A VA VA
vag(x, y,t) = ag — BB;) ( 2p ++/A (tan( AE) — cot (ff))),
3wl (_p n VA(A2-B2)-A+A cos(\/Zf))

a )

v39(x,¥,8) = ag — Asin(VAE)+B

B _3pw(_ _1/A(A2—Bz)+A\/ZCOS(\/Zf))
Vao(x, ¥, 1) = ao p ( p Asin(VAE)+B ’

where A and B are two non-zero real constant and satisfies A> — B2 > 0.

VA
—2r cos|—¢
v41 (X, ,8) = ag — ‘P( ( ) >,

VA
\/_sm( )+pcos< E)
1+y-w _ 3(1+y—w+Bwi?p?)
BwA? - 2ard )

2r sin(ﬂs)
(5 ) eos(3 f))
—2r cos(\/z—zf) )
26 )+pcos(L¢ )£va )
2r sin(2¢)
Vssa6(X, Y, 1) = ag — @ <_psm(_5)+\/_w5( §)+\/_>
ar sin( 3¢ ) cos( e
V(5.3 6) = o = ¢ (_Zpsin({}g)mgf ;ﬂﬁm)z(ﬂg)_«z)'
Family 2: p? —4qr > 0 and pq # 0 or qr # 0 are:

where & = A(x +y — wt), A=

Vg (x,y,t) =ag— @ (
—psin

v, xX,V,t) =ay —
43,44( y,t) 0 <P<\/_sm(

we get the same solution as [vs5, ..., V3g], and

3ﬁw/'l(_ @(A%2+B2%)-A <pcosh(\/—$)>
a p+ Asinh(\[@&)+B !

3wl (_ _ \/¢(B2—A2)+A\/asinh(\/$f))
a p A cosh(\[p&)+B ’

1+y—w

BwA?

Vg(X,y,t) = ag —

1749(35;% t) =0ag —

where é = A(x +y —wt), ¢ = —

where A and B are two non-zero real constant and satisfies B2 — A% > 0.

we get the same solutions [v,q, ..., Vs7].

Conclusion: In this paper, the extended generalized Riccati equation mapping method has been
successfully implemented to find new traveling waves solutions for our new proposed
equations. The results show that this method is a powerful mathematical tool for solve other
nonlinear partial differential equations.
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